38 research outputs found

    Security wireless sensor networks: prospects, challenges, and future

    Get PDF
    With the advancements of networking technologies and miniaturization of electronic devices, wireless sensor network (WSN) has become an emerging area of research in academic, industrial, and defense sectors. Different types of sensing technologies combined with processing power and wireless communication capability make sensor networks very lucrative for their abundant use in near future. However, many issues are yet to be solved before their full-scale practical implementations. Among all the research issues in WSN, security is one of the most challenging topics to deal with. The major hurdle of securing a WSN is imposed by the limited resources of the sensors participating in the network. Again, the reliance on wireless communication technology opens the door for various types of security threats and attacks. Considering the special features of this type of network, in this chapter we address the critical security issues in wireless sensor networks. We talk about cryptography, steganography, and other basics of network security and their applicability in WSN. We explore various types of threats and attacks against wireless sensor networks, possible countermeasures, mentionable works done so far, other research issues, etc. We also introduce the view of holistic security and future trends towards research in wireless sensor network security

    Security attacks and challenges in wireless sensor networks

    Get PDF

    A sinkhole resilient protocol for wireless sensor networks: Performance and security analysis

    Get PDF
    International audienceThis work focuses on: (1) understanding the impact of selective forwarding attacks on tree-based routing topologies in wireless sensor networks (WSNs), and (2) investigating cryptography-based strategies to limit network degradation caused by sinkhole attacks. The main motivation of our research stems from the following observations. First, WSN protocols that construct a fixed routing topology may be significantly affected by malicious attacks. Second, considering networks deployed in a difficult to access geographical region, building up resilience against such attacks rather than detection is expected to be more beneficial. We thus first provide a simulation study on the impact of malicious attacks based on a diverse set of parameters, such as the network scale and the position and number of malicious nodes. Based on this study, we propose a single but very representative metric for describing this impact. Second, we present the novel design and evaluation of two simple and resilient topology-based reconfiguration protocols that broadcast cryptographic values. The results of our simulation study together with a detailed analysis of the cryptographic overhead (communication, memory, and computational costs) show that our reconfiguration protocols are practical and effective in improving resilience against sinkhole attacks, even in the presence of collusion

    Formal modelling and analysis of denial of services attacks in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted considerable research attention in recent years because of the perceived potential benefits offered by self-organising, multi-hop networks consisting of low-cost and small wireless devices for monitoring or control applications in di±cult environments. WSN may be deployed in hostile or inaccessible environments and are often unattended. These conditions present many challenges in ensuring that WSNs work effectively and survive long enough to fulfil their functionalities. Securing a WSN against any malicious attack is a particular challenge. Due to the limited resources of nodes, traditional routing protocols are not appropriate in WSNs and innovative methods are used to route data from source nodes to sink nodes (base stations). To evaluate the routing protocols against DoS attacks, an innovative design method of combining formal modelling and computer simulations has been proposed. This research has shown that by using formal modelling hidden bugs (e.g. vulnerability to attacks) in routing protocols can be detected automatically. In addition, through a rigorous testing, a new routing protocol, RAEED (Robust formally Analysed protocol for wirEless sEnsor networks Deployment), was developed which is able to operate effectively in the presence of hello flood, rushing, wormhole, black hole, gray hole, sink hole, INA and jamming attacks. It has been proved formally and using computer simulation that the RAEED can pacify these DoS attacks. A second contribution of this thesis relates to the development of a framework to check the vulnerability of different routing protocols against Denial of Service(DoS) attacks. This has allowed us to evaluate formally some existing and known routing protocols against various DoS attacks iand these include TinyOS Beaconing, Authentic TinyOS using uTesla, Rumour Routing, LEACH, Direct Diffusion, INSENS, ARRIVE and ARAN protocols. This has resulted in the development of an innovative and simple defence technique with no additional hardware cost for deployment against wormhole and INA attacks. In the thesis, the detection of weaknesses in INSENS, Arrive and ARAN protocols was also addressed formally. Finally, an e±cient design methodology using a combination of formal modelling and simulation is propose to evaluate the performances of routing protocols against DoS attacks

    TRUST EVALUATION BASED SECURITY IN WIRELESS SENSOR NETWORKS

    Get PDF
    The multi-hop routing in wireless sensor networks (WSNs) offers little protection against identity deception through replaying routing information. An adversary can exploit this defect to launch various harmful or even devastating attacks against the routing protocols, including sinkhole attacks, wormhole attacks and Sybil attacks. The situation is further aggravated by mobile and harsh network conditions. Traditional cryptographic techniques or efforts at developing trust-aware routing protocols do not effectively address this severe problem. To secure the WSNs against adversaries misdirecting the multi-hop routing, that has been designed and implemented TARF, a robust trust-aware routing framework for dynamic WSNs. Without tight time synchronization or known geographic information, This project provides trustworthy, time efficient and energy-efficient route. Most importantly, TARF proves effective against those harmful attacks developed out of identity deception; the resilience of TARF is verified through extensive evaluation with both implementation and empirical experiments on large-scale WSNs under various scenarios including mobile and RF-shielding network conditions

    System support for robust data collection in wireless sensing systems

    Get PDF
    This dissertation studied how to provide system support for robust data collection in wireless sensing systems through addressing a few urgent design issues in the existing systems. A wireless sensing system may suffer issues arising at the sensors, during the data transmission, and during the data access by applications. Due to the unique characteristics of wireless sensing systems, certain conventional solutions for networked systems may not work well with these issues. We developed approaches to resolve these urgent problems in the design of wireless sensing systems. Specially, we have achieved the following: (1) we developed a resilient trust model to effectively detect faulty data in wireless sensing systems due to either sensor malfunctioning or malicious attempts to report false data; (2) we developed a low-cost, self-contained, accurate localization system for small-sized ground robotic vehicles, which enhances the wireless sensing systems containing mobile sensors by providing more accurate and highly available location data, with only limited overhead in economic cost and management; (3) we designed and implemented a robust trust-aware routing framework to secure multi-hop routing through a set of sensors in wireless sensing systems; (4) we developed a privacy-preserving wireless sensing system, which protects the user privacy while allowing arbitrary third-party applications to extract knowledge from the collected data
    corecore