1,243 research outputs found

    Subclasses of Normal Helly Circular-Arc Graphs

    Full text link
    A Helly circular-arc model M = (C,A) is a circle C together with a Helly family \A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how do these classes of graphs relate with straight and round digraphs.Comment: 39 pages, 13 figures. A previous version of the paper (entitled Proper Helly Circular-Arc Graphs) appeared at WG'0

    Interval Routing Schemes for Circular-Arc Graphs

    Full text link
    Interval routing is a space efficient method to realize a distributed routing function. In this paper we show that every circular-arc graph allows a shortest path strict 2-interval routing scheme, i.e., by introducing a global order on the vertices and assigning at most two (strict) intervals in this order to the ends of every edge allows to depict a routing function that implies exclusively shortest paths. Since circular-arc graphs do not allow shortest path 1-interval routing schemes in general, the result implies that the class of circular-arc graphs has strict compactness 2, which was a hitherto open question. Additionally, we show that the constructed 2-interval routing scheme is a 1-interval routing scheme with at most one additional interval assigned at each vertex and we an outline algorithm to calculate the routing scheme for circular-arc graphs in O(n^2) time, where n is the number of vertices.Comment: 17 pages, to appear in "International Journal of Foundations of Computer Science

    Proper circular arc graphs as intersection graphs of paths on a grid

    Full text link
    In this paper we present a characterisation, by an infinite family of minimal forbidden induced subgraphs, of proper circular arc graphs which are intersection graphs of paths on a grid, where each path has at most one bend (turn)

    On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid

    Full text link
    Golumbic, Lipshteyn and Stern \cite{Golumbic-epg} proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer kk, BkB_k-EPG graphs are defined as EPG graphs admitting a model in which each path has at most kk bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4B_4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that every circular-arc graph is B3B_3-EPG, and that there exist circular-arc graphs which are not B2B_2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in a rectangle of the grid), we obtain EPR (edge intersection of path in a rectangle) representations. We may define BkB_k-EPR graphs, k≥0k\geq 0, the same way as BkB_k-EPG graphs. Circular-arc graphs are clearly B4B_4-EPR graphs and we will show that there exist circular-arc graphs that are not B3B_3-EPR graphs. We also show that normal circular-arc graphs are B2B_2-EPR graphs and that there exist normal circular-arc graphs that are not B1B_1-EPR graphs. Finally, we characterize B1B_1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs

    Isomorphism of graph classes related to the circular-ones property

    Get PDF
    We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, \Gamma-circular-arc graphs, proper circular-arc graphs and convex-round graphs.Comment: 25 pages, 9 figure
    • …
    corecore