5,759 research outputs found

    On the Set of Circular Total Chromatic Numbers of Graphs

    Full text link
    For every integer r≄3r\ge3 and every \eps>0 we construct a graph with maximum degree r−1r-1 whose circular total chromatic number is in the interval (r,r+\eps). This proves that (i) every integer r≄3r\ge3 is an accumulation point of the set of circular total chromatic numbers of graphs, and (ii) for every Δ≄2\Delta\ge2, the set of circular total chromatic numbers of graphs with maximum degree Δ\Delta is infinite. All these results hold for the set of circular total chromatic numbers of bipartite graphs as well

    An elementary chromatic reduction for gain graphs and special hyperplane arrangements

    Full text link
    A gain graph is a graph whose edges are labelled invertibly by "gains" from a group. "Switching" is a transformation of gain graphs that generalizes conjugation in a group. A "weak chromatic function" of gain graphs with gains in a fixed group satisfies three laws: deletion-contraction for links with neutral gain, invariance under switching, and nullity on graphs with a neutral loop. The laws lead to the "weak chromatic group" of gain graphs, which is the universal domain for weak chromatic functions. We find expressions, valid in that group, for a gain graph in terms of minors without neutral-gain edges, or with added complete neutral-gain subgraphs, that generalize the expression of an ordinary chromatic polynomial in terms of monomials or falling factorials. These expressions imply relations for chromatic functions of gain graphs. We apply our relations to some special integral gain graphs including those that correspond to the Shi, Linial, and Catalan arrangements, thereby obtaining new evaluations of and new ways to calculate the zero-free chromatic polynomial and the integral and modular chromatic functions of these gain graphs, hence the characteristic polynomials and hypercubical lattice-point counting functions of the arrangements. We also calculate the total chromatic polynomial of any gain graph and especially of the Catalan, Shi, and Linial gain graphs.Comment: 31 page

    HipergrĂĄfok = Hypergraphs

    Get PDF
    A projekt cĂ©lkitƱzĂ©seit sikerĂŒlt megvalĂłsĂ­tani. A nĂ©gy Ă©v sorĂĄn több mint szĂĄz kivĂĄlĂł eredmĂ©ny szĂŒletett, amibƑl eddig 84 dolgozat jelent meg a tĂ©ma legkivĂĄlĂłbb folyĂłirataiban, mint Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, stb. SzĂĄmos rĂ©gĂłta fennĂĄllĂł sejtĂ©st bebizonyĂ­tottunk, egĂ©sz rĂ©gi nyitott problĂ©mĂĄt megoldottunk hipergrĂĄfokkal kapcsolatban illetve kapcsolĂłdĂł terĂŒleteken. A problĂ©mĂĄk nĂ©melyike sok Ă©ve, olykor több Ă©vtizede nyitott volt. Nem egy közvetlen kutatĂĄsi eredmĂ©ny, de szintĂ©n bizonyos Ă©rtĂ©kmĂ©rƑ, hogy a rĂ©sztvevƑk egyike a NorvĂ©g KirĂĄlyi AkadĂ©mia tagja lett Ă©s elnyerte a Steele dĂ­jat. | We managed to reach the goals of the project. We achieved more than one hundred excellent results, 84 of them appeared already in the most prestigious journals of the subject, like Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, etc. We proved several long standing conjectures, solved quite old open problems in the area of hypergraphs and related subjects. Some of the problems were open for many years, sometimes for decades. It is not a direct research result but kind of an evaluation too that a member of the team became a member of the Norvegian Royal Academy and won Steele Prize
    • 

    corecore