3,976 research outputs found

    The Kinematic Properties of the Extended Disks of Spiral Galaxies: A Sample of Edge-On Galaxies

    Full text link
    We present a kinematic study of the outer regions (R_25<R<2 R_25) of 17 edge-on disk galaxies. Using deep long-slit spectroscopy (flux sensitivity a few 10^-19 erg s^-1 cm^-2 arcsec^-2), we search for H-alpha emission, which must be emitted at these flux levels by any accumulation of hydrogen due to the presence of the extragalactic UV background and any other, local source of UV flux. We present results from the individual galaxy spectra and a stacked composite. We detect H-alpha in many cases well beyond R_25 and sometimes as far as 2 R_25. The combination of sensitivity, spatial resolution, and kinematic resolution of this technique thus provides a powerful complement to 21-cm observations. Kinematics in the outer disk are generally disk-like (flat rotation curves, small velocity dispersions) at all radii, and there is no evidence for a change in the velocity dispersion with radius. We place strong limits, few percent, on the existence of counter-rotating gas out to 1.5 R_25. These results suggest that thin disks extend well beyond R_25; however, we also find a few puzzling anomalies. In ESO 323-G033 we find two emission regions that have velocities close to the systemic velocity rather than the expected rotation velocity. These low relative velocities are unlikely to be simply due to projection effects and so suggest that these regions are not on disk-plane, circular orbits. In MCG-01-31-002 we find emission from gas with a large velocity dispersion that is co-rotating with the inner disk.Comment: 18 pages, 14 figures, accepted for publication in Ap

    Photometric Monitoring of Open Clusters I. The Survey

    Full text link
    Open clusters, which have age, abundance, and extinction information from studies of main-sequence turn off stars, are the ideal location in which to determine the mass-luminosity-radius relation for low-mass stars. We have undertaken a photometric monitoring survey of open clusters in the Galaxy designed to detect low-mass eclipsing binary systems through variations in their relative light curves. Our aim is to provide an improved calibration of the mass-luminosity-radius relation for low-mass stars and brown dwarfs, to test stellar structure and evolution models, and to help quantify the contribution of low-mass stars to the global mass census in the Galaxy. In this paper we present our survey, describing the data and outlining the analysis techniques. We study six nearby open clusters, with a range of ages from 0.2\sim 0.2 to 4 Gyr and metallicities from approximately solar to -0.2dex. We monitor a field-of-view of > 1 square degree per target cluster, well beyond the characteristic cluster radius, over timescales of hours, days, and months with a sampling rate optimised for the detection of eclipsing binaries with periods of hours to days. Our survey depth is designed to detect eclipse events in a binary with a primary star of \lesssim 0.3~M_{\sun}. Our data have a photometric precision of 3\sim 3 mmag at I16I\approx 16.Comment: 50 pages, 18 figures, accepted for publication in A

    A Comparative Analysis of Phytovolume Estimation Methods Based on UAV-Photogrammetry and Multispectral Imagery in a Mediterranean Forest

    Get PDF
    Management and control operations are crucial for preventing forest fires, especially in Mediterranean forest areas with dry climatic periods. One of them is prescribed fires, in which the biomass fuel present in the controlled plot area must be accurately estimated. The most used methods for estimating biomass are time-consuming and demand too much manpower. Unmanned aerial vehicles (UAVs) carrying multispectral sensors can be used to carry out accurate indirect measurements of terrain and vegetation morphology and their radiometric characteristics. Based on the UAV-photogrammetric project products, four estimators of phytovolume were compared in a Mediterranean forest area, all obtained using the difference between a digital surface model (DSM) and a digital terrain model (DTM). The DSM was derived from a UAV-photogrammetric project based on the structure from a motion algorithm. Four different methods for obtaining a DTM were used based on an unclassified dense point cloud produced through a UAV-photogrammetric project (FFU), an unsupervised classified dense point cloud (FFC), a multispectral vegetation index (FMI), and a cloth simulation filter (FCS). Qualitative and quantitative comparisons determined the ability of the phytovolume estimators for vegetation detection and occupied volume. The results show that there are no significant differences in surface vegetation detection between all the pairwise possible comparisons of the four estimators at a 95% confidence level, but FMI presented the best kappa value (0.678) in an error matrix analysis with reference data obtained from photointerpretation and supervised classification. Concerning the accuracy of phytovolume estimation, only FFU and FFC presented differences higher than two standard deviations in a pairwise comparison, and FMI presented the best RMSE (12.3 m) when the estimators were compared to 768 observed data points grouped in four 500 m2 sample plots. The FMI was the best phytovolume estimator of the four compared for low vegetation height in a Mediterranean forest. The use of FMI based on UAV data provides accurate phytovolume estimations that can be applied on several environment management activities, including wildfire prevention. Multitemporal phytovolume estimations based on FMI could help to model the forest resources evolution in a very realistic way

    Halos around edge-on disk galaxies in the SDSS

    Full text link
    We present a statistical analysis of halo emission for a sample of 1047 edge-on disk galaxies imaged in five bands by the Sloan Digital Sky Survey (SDSS). Stacking the homogeneously rescaled images of the galaxies, we can measure surface brightnesses as deep as mu_r~31 mag/arcsec^2. The results strongly support the almost ubiquitous presence of stellar halos around disk galaxies, whose spatial distribution is well described by a power-law ρr3\rho\propto r^{-3}, in a moderately flattened spheroid (c/a~0.6). The colour estimates in g-r and r-i, although uncertain, give a clear indication for extremely red stellar populations, hinting at old ages and/or non-negligible metal enrichment. These results support the idea of halos being assembled via early merging of satellite galaxies.Comment: 15 pages, 9 figures. Accepted for publication on MNRAS. Version with full resolution images available at http://www.mpa-garching.mpg.de/~zibetti/papers/halos_edgeon.pd

    Galaxy alignments: Observations and impact on cosmology

    Full text link
    Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the physics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of galaxy alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments have taken on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes galaxy alignments, commonly referred to as intrinsic alignments, an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments.Comment: 52 pages excl. references, 16 figures; minor changes to match version published in Space Science Reviews; part of a topical volume on galaxy alignments, with companion papers arXiv:1504.05456 and arXiv:1504.0554
    corecore