46 research outputs found

    A Cyclic Pursuit Framework for Networked Mobile Agents Based on Vector Field Approach

    Get PDF
    This paper proposes a pursuit formation control scheme for a network of double-integrator mobile agents based on a vector field approach. In a leaderless architecture, each agent pursues another one via a cyclic topology to achieve a regular polygon formation. On the other hand, the agents are exposed to a rotational vector field such that they rotate around the vector field centroid, while they keep the regular polygon formation. The main problem of existing approaches in the literature for cyclic pursuit of double-integrator multiagent systems is that under those approaches, the swarm angular velocity and centroid are not controllable based on missions and agents capabilities. However, by employing the proposed vector field approach in this paper, while keeping a regular polygon formation, the swarm angular velocity and centroid can be determined arbitrary. The obtained results can be extended to achieve elliptical formations with cyclic pursuit as well. Simulation results for a team of eight mobile agents verify the accuracy of the proposed control scheme

    Mobile Formation Coordination and Tracking Control for Multiple Non-holonomic Vehicles

    Full text link
    This paper addresses forward motion control for trajectory tracking and mobile formation coordination for a group of non-holonomic vehicles on SE(2). Firstly, by constructing an intermediate attitude variable which involves vehicles' position information and desired attitude, the translational and rotational control inputs are designed in two stages to solve the trajectory tracking problem. Secondly, the coordination relationships of relative positions and headings are explored thoroughly for a group of non-holonomic vehicles to maintain a mobile formation with rigid body motion constraints. We prove that, except for the cases of parallel formation and translational straight line formation, a mobile formation with strict rigid-body motion can be achieved if and only if the ratios of linear speed to angular speed for each individual vehicle are constants. Motion properties for mobile formation with weak rigid-body motion are also demonstrated. Thereafter, based on the proposed trajectory tracking approach, a distributed mobile formation control law is designed under a directed tree graph. The performance of the proposed controllers is validated by both numerical simulations and experiments

    Coordinated path following of unicycles : A nested invariant sets approach

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/https://doi.org/10.1016/j.automatica.2015.06.033. © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We formulate a coordinated path following problem for N unicycle mobile robots as an instance of a nested set stabilization problem. Stabilization of the first set corresponds to driving the unicycles to their assigned paths. Stabilization of the second set, a subset of the first, corresponds to meeting the coordination specification. The first set is stabilized in a decentralized manner using feedback linearization. For arbitrary coordination tasks we utilize feedback linearization to stabilize the nested set in a centralized manner. In the special case in which coordination entails making the unicycles maintain a formation along their paths, we propose semi-distributed control law under less restrictive communication assumptions. Experimental results are provided

    Coordinated path following: A nested invariant sets approach

    Get PDF
    In this thesis we study a coordinated path following problem for multi-agent systems. Each agent is modelled by a smooth, nonlinear, autonomous, deterministic control-affine ordinary differential equation. Coordinated path following involves designing feedback controllers that make each agent's output approach and traverse a pre-assigned path while simultaneously coordinating its motion with the other agents. Coordinated motion along paths includes tasks like maintaining formations, traversing paths at a common speed and more general tasks like making the positions of some agents obey functional constraints that depend on the states of other agents. The coordinated path following problem is viewed as a nested set stabilization problem. In the nested set stabilization approach, stabilization of the larger set corresponds to driving the agents to their assigned paths. This set, under suitable assumptions, is an embedded, controlled invariant, product submanifold and is called the multi-agent path following manifold. Stabilization of the nested set, contained in the multi-agent path following manifold, corresponds to meeting the coordination specification. Under appropriate assumptions, this set is also an embedded controlled invariant submanifold which we call the coordination set. Our approach to locally solving nested set stabilization problems is based on feedback equivalence of control systems. We propose and solve two local feedback equivalence problems for nested invariant sets. The first, less restrictive, solution gives necessary and sufficient conditions for the dynamics of a system restricted to the larger submanifold and transversal to the smaller submanifold to be linear and controllable. This normal form facilitates designing controllers that locally stabilize the coordination set relative to the multi-agent path following manifold. The second, more restrictive, result additionally imposes that the transversal dynamics to the larger submanifold be linear and controllable. This result can simplify designing controllers to locally stabilize the multi-agent path following manifold. We propose sufficient conditions under which these normal forms can be used to locally solve the nested set stabilization problem. To illustrate these ideas we consider a coordinated path following problem for a multi-agent system of dynamic unicycles. The multi-agent path following manifold is characterized for arbitrary paths. We show that each unicycle is feedback equivalent, in a neighbourhood of its assigned path, to a system whose transversal and tangential dynamics to the path following manifold are both double integrators. We provide sufficient conditions under which the coordination set is nonempty. The effectiveness of the proposed approach is demonstrated experimentally on two robots

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance
    corecore