30,338 research outputs found

    Weighted Modulo Orientations of Graphs

    Get PDF
    This dissertation focuses on the subject of nowhere-zero flow problems on graphs. Tutte\u27s 5-Flow Conjecture (1954) states that every bridgeless graph admits a nowhere-zero 5-flow, and Tutte\u27s 3-Flow Conjecture (1972) states that every 4-edge-connected graph admits a nowhere-zero 3-flow. Extending Tutte\u27s flows conjectures, Jaeger\u27s Circular Flow Conjecture (1981) says every 4k-edge-connected graph admits a modulo (2k+1)-orientation, that is, an orientation such that the indegree is congruent to outdegree modulo (2k+1) at every vertex. Note that the k=1 case of Circular Flow Conjecture coincides with the 3-Flow Conjecture, and the case of k=2 implies the 5-Flow Conjecture. This work is devoted to providing some partial results on these problems. In Chapter 2, we study the problem of modulo 5-orientation for given multigraphic degree sequences. We prove that a multigraphic degree sequence d=(d1,..., dn) has a realization G with a modulo 5-orientation if and only if di≤1,3 for each i. In addition, we show that every multigraphic sequence d=(d1,..., dn) with min{1≤i≤n}di≥9 has a 9-edge-connected realization that admits a modulo 5-orientation for every possible boundary function. Jaeger conjectured that every 9-edge-connected multigraph admits a modulo 5-orientation, whose truth would imply Tutte\u27s 5-Flow Conjecture. Consequently, this supports the conjecture of Jaeger. In Chapter 3, we show that there are essentially finite many exceptions for graphs with bounded matching numbers not admitting any modulo (2k+1)-orientations for any positive integers t. We additionally characterize all infinite many graphs with bounded matching numbers but without a nowhere-zero 3-flow. This partially supports Jaeger\u27s Circular Flow Conjecture and Tutte\u27s 3-Flow Conjecture. In 2018, Esperet, De Verclos, Le and Thomass introduced the problem of weighted modulo orientations of graphs and indicated that this problem is closely related to modulo orientations of graphs, including Tutte\u27s 3-Flow Conjecture. In Chapter 4 and Chapter 5, utilizing properties of additive bases and contractible configurations, we reduced the Esperet et al\u27s edge-connectivity lower bound for some (signed) graphs families including planar graphs, complete graphs, chordal graphs, series-parallel graphs and bipartite graphs, indicating that much lower edge-connectivity bound still guarantees the existence of such orientations for those graph families. In Chapter 6, we show that the assertion of Jaeger\u27s Circular Flow Conjecture with k=2 holds asymptotically almost surely for random 9-regular graphs

    Distributive Lattices, Polyhedra, and Generalized Flow

    Full text link
    A D-polyhedron is a polyhedron PP such that if x,yx,y are in PP then so are their componentwise max and min. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, D-polyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact every D-polyhedron corresponds to a directed graph with arc-parameters, such that every point in the polyhedron corresponds to a vertex potential on the graph. Alternatively, an edge-based description of the point set can be given. The objects in this model are dual to generalized flows, i.e., dual to flows with gains and losses. These models can be specialized to yield some cases of distributive lattices that have been studied previously. Particular specializations are: lattices of flows of planar digraphs (Khuller, Naor and Klein), of α\alpha-orientations of planar graphs (Felsner), of c-orientations (Propp) and of Δ\Delta-bonds of digraphs (Felsner and Knauer). As an additional application we exhibit a distributive lattice structure on generalized flow of breakeven planar digraphs.Comment: 17 pages, 3 figure

    Integer Flows and Circuit Covers of Graphs and Signed Graphs

    Get PDF
    The work in Chapter 2 is motivated by Tutte and Jaeger\u27s pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {lcub}2, 3{rcub}, if (G, sigma) is (k -- 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015).;Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥.;Tutte\u27s 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF.;The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it contains an even factor H with.;∥E(H)∥ ≥ 4/7 (∥ E(G)∥+1)+ 1/7 ∥V2 (G)∥, where V2( G) is the set of vertices of degree two
    • …
    corecore