35 research outputs found

    About perfection of circular mixed hypergraphs

    Get PDF
    A mixed hypergraph is a triple H = (X,C,D), where X is the vertex set and each of C and D is a family of subsets of X, the C-edges and D-edges, respectively. A proper k-coloring of H is a mapping c : X → {1,...,k} such that each C-edge has two vertices with a common color and each D-edge has two vertices with different colors. Maximum number of colors in a coloring using all the colors is called upper chromatic number χ ̄(H). Maximum cardinality of subset of vertices which contains no C-edge is C-stability number αC (H). A mixed hypergraph is called C-perfect if χ ̄ (H') = αC (H') for any induced subhypergraph H'. A mixed hyper- graph H is called circular if there exists a host cycle on the vertex set X such that every edge (C- or D-) induces a connected subgraph on the host cycle. We give a characterization of C-perfect circular mixed hypergraphs

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), confirming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    List covering of regular multigraphs

    Full text link
    A graph covering projection, also known as a locally bijective homomorphism, is a mapping between vertices and edges of two graphs which preserves incidencies and is a local bijection. This notion stems from topological graph theory, but has also found applications in combinatorics and theoretical computer science. It has been known that for every fixed simple regular graph HH of valency greater than 2, deciding if an input graph covers HH is NP-complete. In recent years, topological graph theory has developed into heavily relying on multiple edges, loops, and semi-edges, but only partial results on the complexity of covering multigraphs with semi-edges are known so far. In this paper we consider the list version of the problem, called \textsc{List-HH-Cover}, where the vertices and edges of the input graph come with lists of admissible targets. Our main result reads that the \textsc{List-HH-Cover} problem is NP-complete for every regular multigraph HH of valency greater than 2 which contains at least one semi-simple vertex (i.e., a vertex which is incident with no loops, with no multiple edges and with at most one semi-edge). Using this result we almost show the NP-co/polytime dichotomy for the computational complexity of \textsc{ List-HH-Cover} of cubic multigraphs, leaving just five open cases.Comment: Accepted to IWOCA 202

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    Subject Index Volumes 1–200

    Get PDF

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Topics in graph colouring and graph structures

    Get PDF
    This thesis investigates problems in a number of different areas of graph theory. These problems are related in the sense that they mostly concern the colouring or structure of the underlying graph. The first problem we consider is in Ramsey Theory, a branch of graph theory stemming from the eponymous theorem which, in its simplest form, states that any sufficiently large graph will contain a clique or anti-clique of a specified size. The problem of finding the minimum size of underlying graph which will guarantee such a clique or anti-clique is an interesting problem in its own right, which has received much interest over the last eighty years but which is notoriously intractable. We consider a generalisation of this problem. Rather than edges being present or not present in the underlying graph, each is assigned one of three possible colours and, rather than considering cliques, we consider cycles. Combining regularity and stability methods, we prove an exact result for a triple of long cycles. We then move on to consider removal lemmas. The classic Removal Lemma states that, for n sufficiently large, any graph on n vertices containing o(n^3) triangles can be made triangle-free by the removal of o(n^2) edges. Utilising a coloured hypergraph generalisation of this result, we prove removal lemmas for two classes of multinomials. Next, we consider a problem in fractional colouring. Since finding the chromatic number of a given graph can be viewed as an integer programming problem, it is natural to consider the solution to the corresponding linear programming problem. The solution to this LP-relaxation is called the fractional chromatic number. By a probabilistic method, we improve on the best previously known bound for the fractional chromatic number of a triangle-free graph with maximum degree at most three. Finally, we prove a weak version of Vizing's Theorem for hypergraphs. We prove that, if H is an intersecting 3-uniform hypergraph with maximum degree D and maximum multiplicity m, then H has at most 2D+m edges. Furthermore, we prove that the unique structure achieving this maximum is m copies of the Fano Plane
    corecore