29,017 research outputs found

    Average-Case Optimal Approximate Circular String Matching

    Full text link
    Approximate string matching is the problem of finding all factors of a text t of length n that are at a distance at most k from a pattern x of length m. Approximate circular string matching is the problem of finding all factors of t that are at a distance at most k from x or from any of its rotations. In this article, we present a new algorithm for approximate circular string matching under the edit distance model with optimal average-case search time O(n(k + log m)/m). Optimal average-case search time can also be achieved by the algorithms for multiple approximate string matching (Fredriksson and Navarro, 2004) using x and its rotations as the set of multiple patterns. Here we reduce the preprocessing time and space requirements compared to that approach

    A General Framework for Automatic Termination Analysis of Logic Programs

    Full text link
    This paper describes a general framework for automatic termination analysis of logic programs, where we understand by ``termination'' the finitenes s of the LD-tree constructed for the program and a given query. A general property of mappings from a certain subset of the branches of an infinite LD-tree into a finite set is proved. From this result several termination theorems are derived, by using different finite sets. The first two are formulated for the predicate dependency and atom dependency graphs. Then a general result for the case of the query-mapping pairs relevant to a program is proved (cf. \cite{Sagiv,Lindenstrauss:Sagiv}). The correctness of the {\em TermiLog} system described in \cite{Lindenstrauss:Sagiv:Serebrenik} follows from it. In this system it is not possible to prove termination for programs involving arithmetic predicates, since the usual order for the integers is not well-founded. A new method, which can be easily incorporated in {\em TermiLog} or similar systems, is presented, which makes it possible to prove termination for programs involving arithmetic predicates. It is based on combining a finite abstraction of the integers with the technique of the query-mapping pairs, and is essentially capable of dividing a termination proof into several cases, such that a simple termination function suffices for each case. Finally several possible extensions are outlined

    SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification

    Full text link
    Automatic classification of epileptic seizure types in electroencephalograms (EEGs) data can enable more precise diagnosis and efficient management of the disease. This task is challenging due to factors such as low signal-to-noise ratios, signal artefacts, high variance in seizure semiology among epileptic patients, and limited availability of clinical data. To overcome these challenges, in this paper, we present SeizureNet, a deep learning framework which learns multi-spectral feature embeddings using an ensemble architecture for cross-patient seizure type classification. We used the recently released TUH EEG Seizure Corpus (V1.4.0 and V1.5.2) to evaluate the performance of SeizureNet. Experiments show that SeizureNet can reach a weighted F1 score of up to 0.94 for seizure-wise cross validation and 0.59 for patient-wise cross validation for scalp EEG based multi-class seizure type classification. We also show that the high-level feature embeddings learnt by SeizureNet considerably improve the accuracy of smaller networks through knowledge distillation for applications with low-memory constraints

    Z-FIRE: ISM properties of the z = 2.095 COSMOS Cluster

    Get PDF
    We investigate the ISM properties of 13 star-forming galaxies within the z~2 COSMOS cluster. We show that the cluster members have [NII]/Ha and [OIII]/Hb emission-line ratios similar to z~2 field galaxies, yet systematically different emission-line ratios (by ~0.17 dex) from the majority of local star-forming galaxies. We find no statistically significant difference in the [NII]/Ha and [OIII]/Hb line ratios or ISM pressures among the z~2 cluster galaxies and field galaxies at the same redshift. We show that our cluster galaxies have significantly larger ionization parameters (by up to an order of magnitude) than local star-forming galaxies. We hypothesize that these high ionization parameters may be associated with large specific star formation rates (i.e. a large star formation rate per unit stellar mass). If this hypothesis is correct, then this relationship would have important implications for the geometry and/or the mass of stars contained within individual star clusters as a function of redshift.Comment: 11 pages, 5 figures, accepted for publication in Ap
    corecore