371 research outputs found

    PanoGRF: Generalizable Spherical Radiance Fields for Wide-baseline Panoramas

    Full text link
    Achieving an immersive experience enabling users to explore virtual environments with six degrees of freedom (6DoF) is essential for various applications such as virtual reality (VR). Wide-baseline panoramas are commonly used in these applications to reduce network bandwidth and storage requirements. However, synthesizing novel views from these panoramas remains a key challenge. Although existing neural radiance field methods can produce photorealistic views under narrow-baseline and dense image captures, they tend to overfit the training views when dealing with \emph{wide-baseline} panoramas due to the difficulty in learning accurate geometry from sparse 360360^{\circ} views. To address this problem, we propose PanoGRF, Generalizable Spherical Radiance Fields for Wide-baseline Panoramas, which construct spherical radiance fields incorporating 360360^{\circ} scene priors. Unlike generalizable radiance fields trained on perspective images, PanoGRF avoids the information loss from panorama-to-perspective conversion and directly aggregates geometry and appearance features of 3D sample points from each panoramic view based on spherical projection. Moreover, as some regions of the panorama are only visible from one view while invisible from others under wide baseline settings, PanoGRF incorporates 360360^{\circ} monocular depth priors into spherical depth estimation to improve the geometry features. Experimental results on multiple panoramic datasets demonstrate that PanoGRF significantly outperforms state-of-the-art generalizable view synthesis methods for wide-baseline panoramas (e.g., OmniSyn) and perspective images (e.g., IBRNet, NeuRay)

    Walk2Map: Extracting Floor Plans from Indoor Walk Trajectories

    Get PDF
    Recent years have seen a proliferation of new digital products for the efficient management of indoor spaces, with important applications like emergency management, virtual property showcasing and interior design. These products rely on accurate 3D models of the environments considered, including information on both architectural and non-permanent elements. These models must be created from measured data such as RGB-D images or 3D point clouds, whose capture and consolidation involves lengthy data workflows. This strongly limits the rate at which 3D models can be produced, preventing the adoption of many digital services for indoor space management. We provide an alternative to such data-intensive procedures by presenting Walk2Map, a data-driven approach to generate floor plans only from trajectories of a person walking inside the rooms. Thanks to recent advances in data-driven inertial odometry, such minimalistic input data can be acquired from the IMU readings of consumer-level smartphones, which allows for an effortless and scalable mapping of real-world indoor spaces. Our work is based on learning the latent relation between an indoor walk trajectory and the information represented in a floor plan: interior space footprint, portals, and furniture. We distinguish between recovering area-related (interior footprint, furniture) and wall-related (doors) information and use two different neural architectures for the two tasks: an image-based Encoder-Decoder and a Graph Convolutional Network, respectively. We train our networks using scanned 3D indoor models and apply them in a cascaded fashion on an indoor walk trajectory at inference time. We perform a qualitative and quantitative evaluation using both simulated and measured, real-world trajectories, and compare against a baseline method for image-to-image translation. The experiments confirm the feasibility of our approach.Comment: To be published in Computer Graphics Forum (Proc. Eurographics 2021
    corecore