5,071 research outputs found

    TR-2009003: On Proof Realization on Modal Logic

    Full text link

    Bulge plus disc and S\'ersic decomposition catalogues for 16,908 galaxies in the SDSS Stripe 82 co-adds: A detailed study of the ugrizugriz structural measurements

    Full text link
    Quantitative characterization of galaxy morphology is vital in enabling comparison of observations to predictions from galaxy formation theory. However, without significant overlap between the observational footprints of deep and shallow galaxy surveys, the extent to which structural measurements for large galaxy samples are robust to image quality (e.g., depth, spatial resolution) cannot be established. Deep images from the Sloan Digital Sky Survey (SDSS) Stripe 82 co-adds provide a unique solution to this problem - offering 1.6−1.81.6-1.8 magnitudes improvement in depth with respect to SDSS Legacy images. Having similar spatial resolution to Legacy, the co-adds make it possible to examine the sensitivity of parametric morphologies to depth alone. Using the Gim2D surface-brightness decomposition software, we provide public morphology catalogs for 16,908 galaxies in the Stripe 82 ugrizugriz co-adds. Our methods and selection are completely consistent with the Simard et al. (2011) and Mendel et al. (2014) photometric decompositions. We rigorously compare measurements in the deep and shallow images. We find no systematics in total magnitudes and sizes except for faint galaxies in the uu-band and the brightest galaxies in each band. However, characterization of bulge-to-total fractions is significantly improved in the deep images. Furthermore, statistics used to determine whether single-S\'ersic or two-component (e.g., bulge+disc) models are required become more bimodal in the deep images. Lastly, we show that asymmetries are enhanced in the deep images and that the enhancement is positively correlated with the asymmetries measured in Legacy images.Comment: 27 pages, 14 figures. MNRAS accepted. Our catalogs are available in TXT and SQL formats at http://orca.phys.uvic.ca/~cbottrel/share/Stripe82/Catalogs

    A Substellar Companion to a Hot Star in K2's Campaign 0 Field

    Get PDF
    The K2 mission has enabled searches for transits in crowded stellar environments very different from the original Kepler mission field. We describe here the reduction and analysis of time series data from K2's Campaign 0 superstamp, which contains the 150 Myr open cluster M35. We report on the identification of a substellar transiting object orbiting an A star at the periphery of the superstamp. To investigate this transiting source, we performed ground based follow-up observations, including photometry with the Las Cumbres Observatory telescope network and high resolution spectroscopy with Keck/High Resolution Echelle Spectrometer. We confirm that the host star is a hot, rapidly rotating star, precluding precision radial velocity measurements. We nevertheless present a statistical validation of the planet or brown dwarf candidate using speckle interferometry from the WIYN telescope to rule out false positive stellar eclipsing binary scenarios. Based on parallax and proper motion data from Gaia Data Release 2 (DR2), we conclude that the star is not likely to be a member of M35, but instead is a background star around 100 pc behind the cluster. We present an updated ephemeris to enable future transit observations. We note that this is a rare system as a hot host star with a substellar companion. It has a high potential for future follow-up, including Doppler tomography and mid-infrared secondary transit observations

    Solution to Problem 92-11* : On alternating multiple sums

    Get PDF
    No abstract

    Definition and design of a new communication protocol and interfaces for data transmission in High Energy Physics experiments

    Get PDF
    High Energy Physics experiments have very similar architectures with respect to systems for acquisition of data from sensors and for control and management of the detector, and therefore similar requirements about data rate, trigger latency, robustness of critical data against transmission errors, radiation hardness and power dissipation and of hardware components and material budget. The use of common solutions that can be reused in different applicative contexts can reduce costs, risks and time needed for the development of new experiments. In particular, a research and development activity appeared as useful in the field of electrical links that are employed for data transmission to and from Front End circuits inside the detectors to move power-consuming optical converters away from the interaction point. Moving from these considerations, the FF-LYNX (Fast and Flexible links) project was started in January 2009 by a collaboration between INFN-PI (Italian National Institute for Nuclear Physics, division of Pisa) and the Department of Information Engineering (DII_IET) of the University of Pisa, with the aim of defining a new serial communication protocol for integrated distribution of TTC signals and Data Acquisition, satisfying the typical requirements of HEP applications and providing flexibility for its adaptation to different scenarios, and of its implementation in radiation-tolerant, low power interfaces. The work presented in this thesis constituted a phase of the FF-LYNX project working plan and was carried out at the Pisa division of INFN: in particular, it dealt with the definition of a first version of the FF-LYNX protocol and the design of hardware transmitter and receiver interfaces implementing it. In this thesis first of all the purposes of the project are presented and the methodology defined for the project work is outlined; then the FF-LYNX protocol (version 1) is described: the basic issues about trigger and data transmission that were considered in the definition of this version of the protocol are outlined, as well as the solutions that were adopted to address these issues, and the results of simulations in a high-level model of the link, intended to estimate various aspects of the protocol performance, are presented. Subsequently, the architecture that was defined for the interfaces implementing the FF-LYNX protocol version 1 is illustrated, and the VHDL models of the transmitter and receiver blocks that was created in the design phase of the FF-LYNX interfaces is described in detail also reporting results of simulations on a VHDL test bench for the complete transmitter-receiver system. Finally, an FPGA based emulator for the FF-LYNX transmitter-receiver system, foreseen as the final result for the FF-LYNX project first year of activity, is outlined in its functional architecture, the development board chosen for its implementation is briefly described, and the results of preliminary synthesis trials of the designed TX and RX blocks onto the target FPGA are reported
    • 

    corecore