98 research outputs found

    Circuits, Matrices, and Nonassociative Computation

    Get PDF
    AbstractWe consider the complexity of various computational problems over nonassociative algebraic structures. Specifically, we look at the problem of evaluating circuits, formulas, and words, over both nonassociative structures themselves and over matrices with elements in these structures. Extending past work, we show that such problems can characterize a wide variety of complexity classes up to and including NP. As an example, the word (i.e., iterated multiplication) problems involving a sequence of O(logkn) matrices over a structure ( S; +, ·) in which (S; +) is a monoid or an aperiodic monoid are complete for NCk+1 and for ACk, respectively, and a word problem variant involving matrices of size O(logkn) is complete for SCk

    Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

    Get PDF
    In this paper we study arithmetic computations in the nonassociative, and noncommutative free polynomial ring F{X}. Prior to this work, nonassociative arithmetic computation was considered by Hrubes, Wigderson, and Yehudayoff, and they showed lower bounds and proved completeness results. We consider Polynomial Identity Testing and Polynomial Factorization in F{X} and show the following results. 1. Given an arithmetic circuit C computing a polynomial f in F{X} of degree d, we give a deterministic polynomial algorithm to decide if f is identically zero. Our result is obtained by a suitable adaptation of the PIT algorithm of Raz and Shpilka for noncommutative ABPs. 2. Given an arithmetic circuit C computing a polynomial f in F{X} of degree d, we give an efficient deterministic algorithm to compute circuits for the irreducible factors of f in polynomial time when F is the field of rationals. Over finite fields of characteristic p, our algorithm runs in time polynomial in input size and p

    A Linear-Optical Proof that the Permanent is #P-Hard

    Get PDF
    One of the crown jewels of complexity theory is Valiant's 1979 theorem that computing the permanent of an n*n matrix is #P-hard. Here we show that, by using the model of linear-optical quantum computing---and in particular, a universality theorem due to Knill, Laflamme, and Milburn---one can give a different and arguably more intuitive proof of this theorem.Comment: 12 pages, 2 figures, to appear in Proceedings of the Royal Society A. doi: 10.1098/rspa.2011.023

    Gain control network conditions in early sensory coding

    Get PDF
    Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models

    Descriptive Complexity of Deterministic Polylogarithmic Time and Space

    Full text link
    We propose logical characterizations of problems solvable in deterministic polylogarithmic time (PolylogTime) and polylogarithmic space (PolylogSpace). We introduce a novel two-sorted logic that separates the elements of the input domain from the bit positions needed to address these elements. We prove that the inflationary and partial fixed point vartiants of this logic capture PolylogTime and PolylogSpace, respectively. In the course of proving that our logic indeed captures PolylogTime on finite ordered structures, we introduce a variant of random-access Turing machines that can access the relations and functions of a structure directly. We investigate whether an explicit predicate for the ordering of the domain is needed in our PolylogTime logic. Finally, we present the open problem of finding an exact characterization of order-invariant queries in PolylogTime.Comment: Submitted to the Journal of Computer and System Science

    Circuit Evaluation for Finite Semirings

    Get PDF
    The circuit evaluation problem for finite semirings is considered, where semirings are not assumed to have an additive or multiplicative identity. The following dichotomy is shown: If a finite semiring R (i) has a solvable multiplicative semigroup and (ii) does not contain a subsemiring with an additive identity 0 and a multiplicative identity 1 != 0, then its circuit evaluation problem is in the complexity class DET (which is contained in NC^2). In all other cases, the circuit evaluation problem is P-complete

    The model checking problem for intuitionistic propositional logic with one variable is AC1-complete

    Full text link
    We show that the model checking problem for intuitionistic propositional logic with one variable is complete for logspace-uniform AC1. As basic tool we use the connection between intuitionistic logic and Heyting algebra, and investigate its complexity theoretical aspects. For superintuitionistic logics with one variable, we obtain NC1-completeness for the model checking problem.Comment: A preliminary version of this work was presented at STACS 2011. 19 pages, 3 figure
    • …
    corecore