29,963 research outputs found

    MATEX: A Distributed Framework for Transient Simulation of Power Distribution Networks

    Full text link
    We proposed MATEX, a distributed framework for transient simulation of power distribution networks (PDNs). MATEX utilizes matrix exponential kernel with Krylov subspace approximations to solve differential equations of linear circuit. First, the whole simulation task is divided into subtasks based on decompositions of current sources, in order to reduce the computational overheads. Then these subtasks are distributed to different computing nodes and processed in parallel. Within each node, after the matrix factorization at the beginning of simulation, the adaptive time stepping solver is performed without extra matrix re-factorizations. MATEX overcomes the stiff-ness hinder of previous matrix exponential-based circuit simulator by rational Krylov subspace method, which leads to larger step sizes with smaller dimensions of Krylov subspace bases and highly accelerates the whole computation. MATEX outperforms both traditional fixed and adaptive time stepping methods, e.g., achieving around 13X over the trapezoidal framework with fixed time step for the IBM power grid benchmarks.Comment: ACM/IEEE DAC 2014. arXiv admin note: substantial text overlap with arXiv:1505.0669

    Direct Application of the Phase Estimation Algorithm to Find the Eigenvalues of the Hamiltonians

    Get PDF
    The eigenvalue of a Hamiltonian, H\mathcal{H}, can be estimated through the phase estimation algorithm given the matrix exponential of the Hamiltonian, exp(−iH)exp(-i\mathcal{H}). The difficulty of this exponentiation impedes the applications of the phase estimation algorithm particularly when H\mathcal{H} is composed of non-commuting terms. In this paper, we present a method to use the Hamiltonian matrix directly in the phase estimation algorithm by using an ancilla based framework: In this framework, we also show how to find the power of the Hamiltonian matrix-which is necessary in the phase estimation algorithm-through the successive applications. This may eliminate the necessity of matrix exponential for the phase estimation algorithm and therefore provide an efficient way to estimate the eigenvalues of particular Hamiltonians. The classical and quantum algorithmic complexities of the framework are analyzed for the Hamiltonians which can be written as a sum of simple unitary matrices and shown that a Hamiltonian of order 2n2^n written as a sum of LL number of simple terms can be used in the phase estimation algorithm with (n+1+logL)(n+1+logL) number of qubits and O(2anL)O(2^anL) number of quantum operations, where aa is the number of iterations in the phase estimation. In addition, we use the Hamiltonian of the hydrogen molecule as an example system and present the simulation results for finding its ground state energy.Comment: 10 pages, 3 figure

    Models to Reduce the Complexity of Simulating a Quantum Computer

    Get PDF
    Recently Quantum Computation has generated a lot of interest due to the discovery of a quantum algorithm which can factor large numbers in polynomial time. The usefulness of a quantum com puter is limited by the effect of errors. Simulation is a useful tool for determining the feasibility of quantum computers in the presence of errors. The size of a quantum computer that can be simulat ed is small because faithfully modeling a quantum computer requires an exponential amount of storage and number of operations. In this paper we define simulation models to study the feasibility of quantum computers. The most detailed of these models is based directly on a proposed imple mentation. We also define less detailed models which are exponentially less complex but still pro duce accurate results. Finally we show that the two different types of errors, decoherence and inaccuracies, are uncorrelated. This decreases the number of simulations which must be per formed.Comment: 25 page
    • …
    corecore