623 research outputs found

    Performance Evaluation for IP Protection Watermarking Techniques

    Get PDF

    Privacy Analysis of Online and Offline Systems

    Get PDF
    How to protect people's privacy when our life are banded together with smart devices online and offline? For offline systems like smartphones, we often have a passcode to prevent others accessing to our personal data. Shoulder-surfing attacks to predict the passcode by humans are shown to not be accurate. We thus propose an automated algorithm to accurately predict the passcode entered by a victim on her smartphone by recording the video. Our proposed algorithm is able to predict over 92% of numbers entered in fewer than 75 seconds with training performed once.For online systems like surfing on Internet, anonymous communications networks like Tor can help encrypting the traffic data to reduce the possibility of losing our privacy. Each Tor client telescopically builds a circuit by choosing three Tor relays and then uses that circuit to connect to a server. The Tor relay selection algorithm makes sure that no two relays with the same /16 IP address or Autonomous System (AS) are chosen. Our objective is to determine the popularity of Tor relays when building circuits. With over 44 vantage points and over 145,000 circuits built, we found that some Tor relays are chosen more often than others. Although a completely balanced selection algorithm is not possible, analysis of our dataset shows that some Tor relays are over 3 times more likely to be chosen than others. An adversary could potentially eavesdrop or correlate more Tor traffic.Further more, the effectiveness of website fingerprinting (WF) has been shown to have an accuracy of over 90% when using Tor as the anonymity network. The common assumption in previous work is that a victim is visiting one website at a time and has access to the complete network trace of that website. Our main concern about website fingerprinting is its practicality. Victims could visit another website in the middle of visiting one website (overlapping visits). Or an adversary may only get an incomplete network traffic trace. When two website visits are overlapping, the website fingerprinting accuracy falls dramatically. Using our proposed "sectioning" algorithm, the accuracy for predicting the website in overlapping visits improves from 22.80% to 70%. When part of the network trace is missing (either the beginning or the end), the accuracy when using our sectioning algorithm increases from 20% to over 60%

    Effective Iterative Techniques for Fingerprinting Design IP

    Get PDF
    Fingerprinting is an approach that assigns a unique and invisible ID to each sold instance of the intellectual property (IP). One of the key advantages fingerprinting-based intellectual property protection (IPP) has over watermarking-based IPP is the enabling of tracing stolen hardware or software. Fingerprinting schemes have been widely and effectively used to achieve this goal; however, their application domain has been restricted only to static artifacts, such as image and audio, where distinct copies can be obtained easily. In this paper, we propose the first generic fingerprinting technique that can be applied to an arbitrary synthesis (optimization or decision) or compilation problem and, therefore to hardware and software IPs. The key problem with design IP fingerprinting is that there is a need to generate a large number of structurally unique but functionally and timing identical designs. To reduce the cost of generating such distinct copies, we apply iterative optimization in an incremental fashion to solve a fingerprinted instance. Therefore, we leverage on the optimization effort already spent in obtaining previous solutions, yet we generate a uniquely fingerprinted new solution. This generic approach is the basis for developing specific fingerprinting techniques for four important problems in VLSI CAD: partitioning, graph coloring, satisfiability, and standard-cell placement. We demonstrate the effectiveness of the new fingerprinting-based IPP techniques on a number of standard benchmarks

    Framework for privacy-aware content distribution in peer-to- peer networks with copyright protection

    Get PDF
    The use of peer-to-peer (P2P) networks for multimedia distribution has spread out globally in recent years. This mass popularity is primarily driven by the efficient distribution of content, also giving rise to piracy and copyright infringement as well as privacy concerns. An end user (buyer) of a P2P content distribution system does not want to reveal his/her identity during a transaction with a content owner (merchant), whereas the merchant does not want the buyer to further redistribute the content illegally. Therefore, there is a strong need for content distribution mechanisms over P2P networks that do not pose security and privacy threats to copyright holders and end users, respectively. However, the current systems being developed to provide copyright and privacy protection to merchants and end users employ cryptographic mechanisms, which incur high computational and communication costs, making these systems impractical for the distribution of big files, such as music albums or movies.El uso de soluciones de igual a igual (peer-to-peer, P2P) para la distribución multimedia se ha extendido mundialmente en los últimos años. La amplia popularidad de este paradigma se debe, principalmente, a la distribución eficiente de los contenidos, pero también da lugar a la piratería, a la violación del copyright y a problemas de privacidad. Un usuario final (comprador) de un sistema de distribución de contenidos P2P no quiere revelar su identidad durante una transacción con un propietario de contenidos (comerciante), mientras que el comerciante no quiere que el comprador pueda redistribuir ilegalmente el contenido más adelante. Por lo tanto, existe una fuerte necesidad de mecanismos de distribución de contenidos por medio de redes P2P que no supongan un riesgo de seguridad y privacidad a los titulares de derechos y los usuarios finales, respectivamente. Sin embargo, los sistemas actuales que se desarrollan con el propósito de proteger el copyright y la privacidad de los comerciantes y los usuarios finales emplean mecanismos de cifrado que implican unas cargas computacionales y de comunicaciones muy elevadas que convierten a estos sistemas en poco prácticos para distribuir archivos de gran tamaño, tales como álbumes de música o películas.L'ús de solucions d'igual a igual (peer-to-peer, P2P) per a la distribució multimèdia s'ha estès mundialment els darrers anys. L'àmplia popularitat d'aquest paradigma es deu, principalment, a la distribució eficient dels continguts, però també dóna lloc a la pirateria, a la violació del copyright i a problemes de privadesa. Un usuari final (comprador) d'un sistema de distribució de continguts P2P no vol revelar la seva identitat durant una transacció amb un propietari de continguts (comerciant), mentre que el comerciant no vol que el comprador pugui redistribuir il·legalment el contingut més endavant. Per tant, hi ha una gran necessitat de mecanismes de distribució de continguts per mitjà de xarxes P2P que no comportin un risc de seguretat i privadesa als titulars de drets i els usuaris finals, respectivament. Tanmateix, els sistemes actuals que es desenvolupen amb el propòsit de protegir el copyright i la privadesa dels comerciants i els usuaris finals fan servir mecanismes d'encriptació que impliquen unes càrregues computacionals i de comunicacions molt elevades que fan aquests sistemes poc pràctics per a distribuir arxius de grans dimensions, com ara àlbums de música o pel·lícules

    FSM BASED DIGITAL WATERMARKING IN IP SECURITY

    Get PDF
    IP providers are in pressing need of a convenient means to track the illegal redistribution of the sold IPs. An active approach to protect a VLSI design against IP infringement is by embedding a signature that can only be uniquely generated by the IP author into the design during the process of its creation. a VLSI IP is developed in several levels of design abstraction with the help of many sophisticated electronic design automation tools. Each level of design abstraction involves solving some NP-complete optimization problems to satisfy a set of design constraints. In this paper, a new dynamic watermarking scheme is proposed. The watermark is embedded in the state transitions of FSM at the behavioral level

    Publicly Detectable Watermarking for Intellectual Property Authentication in VLSI Design

    Get PDF
    Highlighted with the newly released intellectual property (IP) protection white paper by VSI Alliance, the protection of virtual components or IPs in very large scale integration (VLSI) design has received a great deal of attention recently. Digital signature/watermark is one of the most promising solutions among the known protection mechanisms. It provides desirable proof of authorship without rendering the IP useless. However, it makes the watermark detection, which is as important as watermarking, an NP-hard problem. In fact, the tradeoff between hard-to-attack and easy-to-detect and the lack of efficient detection schemes are the major obstacles for digital signatures to thrive. In this paper, the authors propose a new watermarking method which allows the watermark to be publicly detected without losing its strength and security. The basic idea is to create a cryptographically strong pseudo-random watermark, embed it into the original problem as a special (which the authors call mutual exclusive) constraint, and make it public. The authors combine data integrity technique and the unique characteristics in the design of VLSI IPs such that adversaries will not gain any advantage from the public watermarking for forgery. This new technique is compatible with the existing constraint-based watermarking/fingerprinting techniques. The resulting public–private watermark maintains the strength of a watermark and provides easy detectability with little design overhead. The authors build the mathematical framework for this approach based on the concept of mutual exclusive constraints. They use popular VLSI CAD problems, namely technology mapping, partitioning, graph coloring, FPGA design, and Boolean satisfiability, to demonstrate the public watermark’s easy detectability, high credibility, low design overhead, and robustness

    A Survey on IP Watermarking Techniques

    Get PDF
    Intellectual property (IP) block reuse is essential for facilitating the design process of system-on-a-chip. Sharing IP designs poses significant high security risks. Recently, digital watermarking emerged as a candidate solution for copyright protection of IP blocks. In this paper, we survey and classify different techniques used for watermarking IP designs. To this end, we defined several evaluation criteria, which can also be used as a benchmark for new IP watermarking developments. Furthermore, we established a comprehensive set of requirements for future IP watermarking techniques
    corecore