1,397 research outputs found

    Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy

    Get PDF
    Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work

    Advanced Occupancy Measurement Using Sensor Fusion

    Get PDF
    With roughly about half of the energy used in buildings attributed to Heating, Ventilation, and Air conditioning (HVAC) systems, there is clearly great potential for energy saving through improved building operations. Accurate knowledge of localised and real-time occupancy numbers can have compelling control applications for HVAC systems. However, existing technologies applied for building occupancy measurements are limited, such that a precise and reliable occupant count is difficult to obtain. For example, passive infrared (PIR) sensors commonly used for occupancy sensing in lighting control applications cannot differentiate between occupants grouped together, video sensing is often limited by privacy concerns, atmospheric gas sensors (such as CO2 sensors) may be affected by the presence of electromagnetic (EMI) interference, and may not show clear links between occupancy and sensor values. Past studies have indicated the need for a heterogeneous multi-sensory fusion approach for occupancy detection to address the short-comings of existing occupancy detection systems. The aim of this research is to develop an advanced instrumentation strategy to monitor occupancy levels in non-domestic buildings, whilst facilitating the lowering of energy use and also maintaining an acceptable indoor climate. Accordingly, a novel multi-sensor based approach for occupancy detection in open-plan office spaces is proposed. The approach combined information from various low-cost and non-intrusive indoor environmental sensors, with the aim to merge advantages of various sensors, whilst minimising their weaknesses. The proposed approach offered the potential for explicit information indicating occupancy levels to be captured. The proposed occupancy monitoring strategy has two main components; hardware system implementation and data processing. The hardware system implementation included a custom made sound sensor and refinement of CO2 sensors for EMI mitigation. Two test beds were designed and implemented for supporting the research studies, including proof-of-concept, and experimental studies. Data processing was carried out in several stages with the ultimate goal being to detect occupancy levels. Firstly, interested features were extracted from all sensory data collected, and then a symmetrical uncertainty analysis was applied to determine the predictive strength of individual sensor features. Thirdly, a candidate features subset was determined using a genetic based search. Finally, a back-propagation neural network model was adopted to fuse candidate multi-sensory features for estimation of occupancy levels. Several test cases were implemented to demonstrate and evaluate the effectiveness and feasibility of the proposed occupancy detection approach. Results have shown the potential of the proposed heterogeneous multi-sensor fusion based approach as an advanced strategy for the development of reliable occupancy detection systems in open-plan office buildings, which can be capable of facilitating improved control of building services. In summary, the proposed approach has the potential to: (1) Detect occupancy levels with an accuracy reaching 84.59% during occupied instances (2) capable of maintaining average occupancy detection accuracy of 61.01%, in the event of sensor failure or drop-off (such as CO2 sensors drop-off), (3) capable of utilising just sound and motion sensors for occupancy levels monitoring in a naturally ventilated space, (4) capable of facilitating potential daily energy savings reaching 53%, if implemented for occupancy-driven ventilation control

    Implementation of an Ultrasonic Device for the Visually Impaired

    Get PDF
    An Implementation of Ultrasonic Detector for Visually Impaired Ultrasonic is defined as any bands above audible band (20 kHz) and up to MHz range, and it is widely used in many fields, such as medical, engineering, and military. Another unique characteristic of ultrasonic waves is that it can penetrate opaque materials that other waves cannot. This makes it a very valuable asset to measure distance and thickness of an object in an inexpensive and reliable way. This paper describes a simple and inexpensive but yet reliable ultrasonic device to help the visually impaired people to detect objects several meters away. There are a number of ways to design a device engaging ultrasonic principle. In our approach the detection is initially reflected as a change of duty cycle, and then it is converted into the variation of the frequency, and eventually the user is alerted by the sound from a buzzer. The transmitter sends a continuous 40 kHz signal without modulation. The reflected ultrasonic signal collected by the receiver is very weak, and thus it needs to be amplified and rectified. Two Peripheral Interface Controllers (PICs) are employed in this design. A good feature about this device is that it can updates its readings very quickly, which is required in detecting fast moving objects, such as cars and motorcycles. Most of the components used here are low power chips, hence battery lifetime can be prolonged. The small volume and light weight make it possible to put the ultrasonic transmitter and receiver on someone's arms, which is a convenient way to detect objects on the way ahead.School of Electrical & Computer Engineerin

    Special oils for halal and safe cosmetics

    Get PDF
    Three types of non conventional oils were extracted, analyzed and tested for toxicity. Date palm kernel oil (DPKO), mango kernel oil (MKO) and Ramputan seed oil (RSO). Oil content for tow cultivars of dates Deglect Noor and Moshkan was 9.67% and 7.30%, respectively. The three varieties of mango were found to contain about 10% oil in average. The red yellow types of Ramputan were found to have 11 and 14% oil, respectively. The phenolic compounds in DPKO, MKO and RSO were 0.98, 0.88 and 0.78 mg/ml Gallic acid equivalent, respectively. Oils were analyzed for their fatty acid composition and they are rich in oleic acid C18:1 and showed the presence of (dodecanoic acid) lauric acid C12:0, which reported to appear some antimicrobial activities. All extracted oils, DPKO, MKO and RSO showed no toxic effect using prime shrimp bioassay. Since these oils are stable, melt at skin temperature, have good lubricity and are great source of essential fatty acids; they could be used as highly moisturizing, cleansing and nourishing oils because of high oleic acid content. They are ideal for use in such halal cosmetics such as Science, Engineering and Technology 75 skin care and massage, hair-care, soap and shampoo products

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 220, June 1981

    Get PDF
    Approximately 137 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1981 are recorded, covering a variety of topics in aerospace medicine and biology

    Evaluation of Garbage Management Based on IoT

    Get PDF
    Smart Waste Monitoring: To track the amount of waste in bins and containers, IOT-enabled garbage management systems use sensors and connected devices. These sensors can communicate real-time data to a centralized monitoring system and can identify the fill level. This data aids in streamlining waste collection routes, cutting back on pointless pickups, and enhancing garbage management effectiveness as a whole. Effective Resource Allocation: By giving precise data on waste generation patterns and trends, IOT-based garbage management systems enable optimal resource allocation. This information can be used by municipal authorities to make well-informed decisions on waste collection schedules, resource deployment, and staffing levels. IOT-based waste management solutions have the potential to make trash management procedures more effective and efficient while also being more affordable. The best garbage collection routes, operational cost reductions, and resource utilization may all be achieved with the aid of research into the best deployment strategies for IOT sensors and devices. Environmental Impact and Sustainability: Research Objective: Clearly identify the research objective, for example, by assessing how well IOT-based garbage management systems gather waste and allocate resources. Data gathering: Compile pertinent information on the methods used for trash generation, collection, and resource use. On-site observations, employee interviews, and database access for waste management operations are all effective ways to accomplish this. Gather information on IOT sensor technologies and their capabilities as well. Taken As alternative for Smart Waste Bins, Waste Level, Sensors, AI Recycling, Robots, E-Waste Kiosks. Taken for Evaluation preference is Reliability, Mobility, Service Continuity, User Convenience., and Energy Efficiency. Smart Waste Bins has performed more when compare to with other Real-Time Monitoring: The Internet of Things (IOT) can be used in waste management to enable real-time monitoring of trash cans or bins can be used to enhance garbage sorting procedures. Smart bins with cameras and sensors can automatically recognize and sort various types of rubbish. These smart bins can identify and categorise rubbish by utilizing IOT technology.  on their material composition or recycling category

    Development of a real-time ultrasonic sensing system for automated and robotic welding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The implementation of robotic technology into welding processes is made difficult by the inherent process variables of part location, fit up, orientation and repeatability. Considering these aspects, to ensure weld reproducibility consistency and quality, advanced adaptive control techniques are essential. These involve not only the development of adequate sensors for seam tracking and joint recognition but also developments of overall machines with a level of artificial intelligence sufficient for automated welding. The development of such a prototype system which utilizes a manipulator arm, ultrasonic sensors and a transistorised welding power source is outlined. This system incorporates three essential aspects. It locates and tracks the welding seam ensuring correct positioning of the welding head relatively to the joint preparation. Additionally, it monitors the joint profile of the molten weld pool and modifies the relevant heat input parameters ensuring consistent penetration, joint filling and acceptable weld bead shape. Finally, it makes use of both the above information to reconstruct three-dimensional images of the weld pool silhouettes providing in-process inspection capabilities of the welded joints. Welding process control strategies have been incorporated into the system based on quantitative relationships between input parameters and weld bead shape configuration allowing real-time decisions to be made during the process of welding, without the need for operation intervention.British Technology Group (BTG

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 182, July 1978

    Get PDF
    This bibliography lists 165 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1978

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included
    corecore