1,889 research outputs found

    Piezoelectric vibration energy harvesting from airflow in HVAC (Heating Ventilation and Air Conditioning) systems

    Get PDF
    This study focuses on the design and wind tunnel testing of a high efficiency Energy Harvesting device, based on piezoelectric materials, with possible applications for the sustainability of smart buildings, structures and infrastructures. The development of the device was supported by ESA (the European Space Agency) under a program for the space technology transfer in the period 2014-2016. The EH device harvests the airflow inside Heating, Ventilation and Air Conditioning (HVAC) systems, using a piezoelectric component and an appropriate customizable aerodynamic appendix or fin that takes advantage of specific airflow phenomena (vortex shedding and galloping), and can be implemented for optimizing the energy consumption inside buildings. Focus is given on several relevant aspects of wind tunnel testing: different configurations for the piezoelectric bender (rectangular, cylindrical and T-shaped) are tested and compared, and the effective energy harvesting potential of a working prototype device is assessed

    Energy harvesting towards self-powered iot devices

    Get PDF
    The internet of things (IoT) manages a large infrastructure of web-enabled smart devices, small devices that use embedded systems, such as processors, sensors, and communication hardware to collect, send, and elaborate on data acquired from their environment. Thus, from a practical point of view, such devices are composed of power-efficient storage, scalable, and lightweight nodes needing power and batteries to operate. From the above reason, it appears clear that energy harvesting plays an important role in increasing the efficiency and lifetime of IoT devices. Moreover, from acquiring energy by the surrounding operational environment, energy harvesting is important to make the IoT device network more sustainable from the environmental point of view. Different state-of-the-art energy harvesters based on mechanical, aeroelastic, wind, solar, radiofrequency, and pyroelectric mechanisms are discussed in this review article. To reduce the power consumption of the batteries, a vital role is played by power management integrated circuits (PMICs), which help to enhance the system's life span. Moreover, PMICs from different manufacturers that provide power management to IoT devices have been discussed in this paper. Furthermore, the energy harvesting networks can expose themselves to prominent security issues putting the secrecy of the system to risk. These possible attacks are also discussed in this review article

    Smart Materials and Devices for Energy Harvesting

    Get PDF
    This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds

    Review of Contemporary Energy Harvesting Techniques and Their Feasibility in Wireless Geophones

    Full text link
    Energy harvesting converts ambient energy to electrical energy providing numerous opportunities to realize wireless sensors. Seismic exploration is a prime avenue to benefit from it as energy harvesting equipped geophones would relieve the burden of cables which account for the biggest chunk of exploration cost and equipment weight. Since numerous energies are abundantly available in seismic fields, these can be harvested to power up geophones. However, due to the random and intermittent nature of the harvested energy, it is important that geophones must be equipped to tap from several energy sources for a stable operation. It may involve some initial installation cost but in the long run, it is cost-effective and beneficial as the sources for energy harvesting are available naturally. Extensive research has been carried out in recent years to harvest energies from various sources. However, there has not been a thorough investigation of utilizing these developments in the seismic context. In this survey, a comprehensive literature review is provided on the research progress in energy harvesting methods suitable for direct adaptation in geophones. Specifically, the focus is on small form factor energy harvesting circuits and systems capable of harvesting energy from wind, sun, vibrations, temperature difference, and radio frequencies. Furthermore, case studies are presented to assess the suitability of the studied energy harvesting methods. Finally, a design of energy harvesting equipped geophone is also proposed

    Integration of aero-elastic belt into the built environment for low-energy wind harnessing: current status and a case study

    Get PDF
    Low-powered devices are ubiquitous in this modern age especially their application in the urban and built environment. The myriad of low-energy applications extend from wireless sensors, data loggers, transmitters and other small-scale electronics. These devices which operate in the microWatt to milliWatt power range and will play a significant role in the future of smart cities providing power for extended operation with little or no battery dependence. Low energy harvesters such as the aero-elastic belt are suitable for integration with wireless sensors and other small-scale electronic devices and therefore there is a need for studying its optimal installation conditions. In this work, a case study presenting the Computational Fluid Dynamics modelling of a building integrated with aero-elastic belts (electromagnetic transduction type) was presented. The simulation used a gable-roof type building model with a 27° pitch obtained from the literature. The atmospheric boundary layer flow was employed for the simulation of the incident wind. The work investigates the effect of various wind speeds and aero-elastic belt locations on the performance of the device giving insight on the potential for integration of the harvester into the built environment. The apex of the roof of the building yielded the highest power output for the aero-elastic belt due to flow speed-up maximisation in this region. This location produced the largest power output under the 45° angle of approach, generating an estimated 62.4 mW of power under accelerated wind in belt position of up to 6.2 m/s. For wind velocity of 10 m/s, wind in this position accelerated up to approximately 14.4 m/s which is a 37.5% speed-up at the particular height. This occurred for an oncoming wind 30° relative to the building facade. For velocity equal to 4.7 m/s under 0° wind direction, airflows in facade edges were the fastest at 5.4 m/s indicating a 15% speed-up along the edges of the building

    Advanced Nanoelectromechanical Systems for Next Generation Energy Harvesting

    Get PDF
    The ever-increasing desire to produce portable, mobile and self-powered wireless micro-/nano systems (MNSs) with extended lifetimes has lead to the significant advancement in the area of mechanical energy harvesting over the last few years and it has been possible not only because has nanotechnology evolved as a powerful tool for the manipulation of matter on an atomic, molecular, and supramolecular scale, but also different micro-/nano fabrication techniques have enabled researchers and scientists to create, visualize, analyse and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within the systems. The dissertation first discusses briefly about energy harvesting technologies for self-powered MNSs, for example a wireless aircraft structural health monitoring (SHM) system, with a particular focus on piezoelectric nanogenerators (PENG) and triboelectric nanogenerators (TENG) as they are the most promising approaches for converting ambient tiny mechanical energy into electrical energy efficiently and effectively and then it analyzes the theoretical and experimental methodologies for efficient energy harvesting using PENG, TENG and hybrid devices. The piezoelectric property intertwined with the semiconducting behaviour of different ZnO nanostructures has made them ideal candidate for piezoelectric energy harvesting, also intensive and state-of-the-art research has been going on to enhance the performance of the PENG devices based on 1D and 2D ZnO nanostructures. In this work, a high performance and consolidated PENG device based on the integration of ZnO nanowires and nanoplates on the same substrate has been demonstrated, that produces an output electrical power of 8.4 µW/cm2 at the matched load of 10MΩ that manifests their ability for powering up different MNSs. Since hybrid nanogenerators (HNG) integrate different types of harvesters in a single unit, where several energy sources can be leveraged either simultaneously or individually, in the next part of this work, a HNG device integrating PENG and TENG components has been designed, fabricated and characterized where PENG and TENG parts mutually enhance the performance of each other resulting an instantaneous peak power density of 1.864mW/cm2 and subsequently the device has been used to charge several commercial capacitors to corroborate their potential for aircraft SHM applications. Moreover, the hybrid device exhibits strong potential for wearable electronics as it can harvest energy from human walking and normal hand movements. However, successful implementation of self-powered electronics, such as a wireless aircraft SHM depends not only on the performance of individual parts but also on components integration within the system, where each device/system node within the network consists of a low-power microcontroller unit, high-performance data-processing/storage units, a wireless signal transceiver, ultrasensitive sensors based on a micro-/nano electro-mechanical system, and most importantly the embedded powering units. This dissertation aims to deepen the understanding of the different energy harvesting methods utilizing the knowledge of nanoscale phenomena and nanofabrication tools along with the associated prospects and challenges and thus, this research in the field of energy harvesting using advanced nano electro-mechanical systems could have a substantial impact on many areas, ranging from the fundamental study of new nanomaterial properties and different effects in nanostructures to diverse applications
    • …
    corecore