25 research outputs found

    Chip- and System-Level Reliability on SiC-based Power Modules

    Get PDF
    The blocking voltage, switching frequency and temperature tolerance of power devices have been greatly improved due to the revolution of wide bandgap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN). Owing to the development of SiC-based power devices, the power rating, operating voltage, and power density of power modules have been significantly improved. However, the reliability of SiC-based power modules has not been fully explored yet. Thus, this dissertation focuses on the chip- and system-level reliability on SiC-based power modules. For chip-level reliability, this work focuses on on-chip SiC ESD protection devices for SiC-based integrated circuits (ICs). In order to develop SiC ESD protection devices, SiC-based Ohmic contact and ion implantation have been studied. Nickel/Titanium/Aluminum (Ni/Ti/Al) metal stacks were deposited on SiC substrates to form Ohmic contact. Circular transfer length method (CTLM) structures were fabricated to characterize contact resistivity. Ion implantation was designed and simulated by Sentraurus technology computer aided design (TCAD) software. Secondary-ion mass spectrometry (SIMS) results show a good match with the simulation results. In addition, SiC ESD protection devices, such as N-type metal-oxide-semiconductor (NMOS), laterally diffused metal-oxide-semiconductor (LDMOS), high-voltage silicon controlled rectifier (HV-SCR) and low-voltage silicon controlled rectifier (LV-SCR), have been designed. Transmission line pulse (TLP) and very fast TLP (VF-TLP) measurements were carried out to characterize their ESD performance. The proposed SiC-based HV-SCR shows the highest failure current on TLP measurement and can be used as an area-efficient ESD protection device. On the other hand, for system-level reliability, this dissertation focuses on the galvanic isolation of high-temperature SiC power modules. Low temperature co-fired ceramics (LTCC) based high-temperature optocouplers were designed and fabricated as galvanic isolators. The LTCC-based high-temperature optocouplers show promising driving capability and steady response speed from 25 ºC to 250 ºC. In order to verify the performance of the high-temperature optocouplers at the system level, LTCC-based gate drivers that utilize the high-temperature optocouplers as galvanic isolators were designed and integrated into a high-temperature SiC-based power module. Finally, the high-temperature power module with integrated LTCC-based gate drivers was characterized by DPTs from 25 ºC to 200 ºC. The power module shows reliable switching performance at elevated temperatures

    Chip- and System-Level Reliability on SiC-based Power Modules

    Get PDF
    The blocking voltage, switching frequency and temperature tolerance of power devices have been greatly improved due to the revolution of wide bandgap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN). Owing to the development of SiC-based power devices, the power rating, operating voltage, and power density of power modules have been significantly improved. However, the reliability of SiC-based power modules has not been fully explored yet. Thus, this dissertation focuses on the chip- and system-level reliability on SiC-based power modules. For chip-level reliability, this work focuses on on-chip SiC ESD protection devices for SiC-based integrated circuits (ICs). In order to develop SiC ESD protection devices, SiC-based Ohmic contact and ion implantation have been studied. Nickel/Titanium/Aluminum (Ni/Ti/Al) metal stacks were deposited on SiC substrates to form Ohmic contact. Circular transfer length method (CTLM) structures were fabricated to characterize contact resistivity. Ion implantation was designed and simulated by Sentraurus technology computer aided design (TCAD) software. Secondary-ion mass spectrometry (SIMS) results show a good match with the simulation results. In addition, SiC ESD protection devices, such as N-type metal-oxide-semiconductor (NMOS), laterally diffused metal-oxide-semiconductor (LDMOS), high-voltage silicon controlled rectifier (HV-SCR) and low-voltage silicon controlled rectifier (LV-SCR), have been designed. Transmission line pulse (TLP) and very fast TLP (VF-TLP) measurements were carried out to characterize their ESD performance. The proposed SiC-based HV-SCR shows the highest failure current on TLP measurement and can be used as an area-efficient ESD protection device. On the other hand, for system-level reliability, this dissertation focuses on the galvanic isolation of high-temperature SiC power modules. Low temperature co-fired ceramics (LTCC) based high-temperature optocouplers were designed and fabricated as galvanic isolators. The LTCC-based high-temperature optocouplers show promising driving capability and steady response speed from 25 ºC to 250 ºC. In order to verify the performance of the high-temperature optocouplers at the system level, LTCC-based gate drivers that utilize the high-temperature optocouplers as galvanic isolators were designed and integrated into a high-temperature SiC-based power module. Finally, the high-temperature power module with integrated LTCC-based gate drivers was characterized by DPTs from 25 ºC to 200 ºC. The power module shows reliable switching performance at elevated temperatures

    Bipolar-CMOS-DMOS Process-Based a Robust and High-Accuracy Low Drop-Out Regulator

    Get PDF
    A 40V BCD process high-accuracy and robust Low Drop-Out Regulator was proposed and tape-out in CSMC; the LDO was integrated in a LED Control and Driver SOC of outdoor applications. The proposed LDO converted the 12V~40V input power to 5V for the low voltage circuits inside the SOC. The robustness of LDO was important because the application condition of the SOC was bad. It was simulated in all process corner, -55℃~150℃ temperature and 12V~40V power voltage conditions. Simulation result shows that the LDO works robustly in conditions mentioned above. The default precision of LDO output voltage is ±2.75% max in all conditions, moreover, by utilizing a trim circuit in the feedback network, the precision can be improved to ±0.5% max after being trimmed by 3 bit digital trim signal Trim[3:1]. The total size of the proposed LDO is 135um*450um and the maximum current consumption is 284uA

    Modeling of reverse current effects in trench-based smart power technologies

    Get PDF
    The increase in complexity in todays automotive products is driven by the trend to implement new features in the area of safety, comfort and entertainment. This significantly raises the safety requirements of new ICs and the identification of possible sources of failures gains in priority. One of these failure sources is the injection of parasitic currents into the common substrate of a chip. This does not only occur during exceptions in the operation of the IC but also affects applications which require switching of inductive loads. The difficulty to handle substrate current injection originates from its nonlocality as it potentially influences the entire IC. In this thesis a point-to-point modeling scheme for Spice-based circuit simulation is proposed. It addresses parasitic coupling effects caused by minority carrier injection into the substrate of a deep-trench based BCD technology. Since minority carriers can diffuse over large distances in the common substrate and disturb circuits in their normal operation, a quantitative approach is necessary to address this parasitic effect early during design. An equivalent circuit based on the chip's design is extracted and the coupling effect between the perturbing devices and the susceptible nodes is represented by Verilog-AMS models. These models represent the three main components in the coupling path which are the forward biased diode at the perturbing device, the reverse biased diode at the susceptible node, and the intermediary common substrate of the chip. An automated layout extraction framework identifies the injectors of the minority carriers and the sensitive devices. Additionally, it determines the relevant parameters for the models. The curve fitting functions of the models are derived from calibrated TCAD simulations which are based on the measurement results of two dedicated test chips. The test chips were specifically designed to provide detailed analysis capabilities of this parasitic coupling effect. This led to a design which contains several different injector nodes and a large number of susceptible nodes spread over the entire area of the chip. Additionally, the chip incorporates the most commonly used layout-based guard structures to obtain an in-depth insight on their efficiency in recent BCD technologies. Based on the results obtained by measurements of the test chips the underlying physics of the coupling effect are discussed in detail. Minority carrier injection in the substrate is not much different to the operating principle of a bipolar transistor and the differences and similarities between them are presented. This forms the basis of the model development and explains how the equations of the Verilog-AMS models were derived. Finally, the entire simulation flow is evaluated and the simulation results are compared to measurements of the chip

    A 16 channel high-voltage driver with 14 bit resolution for driving piezoelectric actuators

    Get PDF
    A high-voltage, 16 channel driver with a maximum voltage of 72 volt and 14 bit resolution in a high-voltage CMOS (HV-CMOS) process is presented. This design incorporates a 14 bit monotonic by design DAC together with a high-voltage complementary class AB output stage for each channel. All 16 channels are used for driving a piezoelectric actuator within the control loop of a micropositioning system. Since the output voltages are static most of the time, a class AB amplifier is used, implementing voltage feedback to achieve 14 bit accuracy. The output driver consists of a push-pull stage with a built-in output current limitation and high-impedance mode. Also a protection circuit is added which limits the internal current when the output voltage saturates against the high-voltage rail. The 14 bit resolution of each channel is generated with a segmented resistor string DAC which assures monotonic by design behavior by using leapfrogging of the buffers used between segments. A diagonal shuffle layout is used for the resistor strings leading to cancellation of first order process gradients. The dense integration of 16 channels with high peak currents results in crosstalk, countered in this design by using staggered switching and resampling of the output voltages

    A High-Temperature, High-Voltage SOI Gate Driver Integrated Circuit with High Drive Current for Silicon Carbide Power Switches

    Get PDF
    High-temperature integrated circuit (IC) design is one of the new frontiers in microelectronics that can significantly improve the performance of the electrical systems in extreme environment applications, including automotive, aerospace, well-logging, geothermal, and nuclear. Power modules (DC-DC converters, inverters, etc.) are key components in these electrical systems. Power-to-volume and power-to-weight ratios of these modules can be significantly improved by employing silicon carbide (SiC) based power switches which are capable of operating at much higher temperature than silicon (Si) and gallium arsenide (GaAs) based conventional devices. For successful realization of such high-temperature power electronic circuits, associated control electronics also need to perform at high temperature. In any power converter, gate driver circuit performs as the interface between a low-power microcontroller and the semiconductor power switches. This dissertation presents design, implementation, and measurement results of a silicon-on-insulator (SOI) based high-temperature (\u3e200 _C) and high-voltage (\u3e30 V) universal gate driver integrated circuit with high drive current (\u3e3 A) for SiC power switches. This mixed signal IC has primarily been designed for automotive applications where the under-hood temperature can reach 200 _C. Prototype driver circuits have been designed and implemented in a Bipolar-CMOS- DMOS (BCD) on SOI process and have been successfully tested up to 200 _C ambient temperature driving SiC switches (MOSFET and JFET) without any heat sink and thermal management. This circuit can generate 30V peak-to-peak gate drive signal and can source and sink 3A peak drive current. Temperature compensating and temperature independent design techniques are employed to design the critical functional units like dead-time controller and level shifters in the driver circuit. Chip-level layout techniques are employed to enhance the reliability of the circuit at high temperature. High-temperature test boards have been developed to test the prototype ICs. An ultra low power on-chip temperature sensor circuit has also been designed and integrated into the gate-driver die to safeguard the driver circuit against excessive die temperature (_ 220 _C). This new temperature monitoring approach utilizes a reverse biased p-n junction diode as the temperature sensing element. Power consumption of this sensor circuit is less than 10 uW at 200 _C

    Monolithic Integration of CMOS Charge Pumps for High Voltage Generation beyond 100 V

    Get PDF
    Monolithic integration of step-up DC-DC converters used to be one of the largest challenges in high voltage CMOS SoCs. Charge pumps are considered as the most promising solution regarding in- tegration levels compared to boost converter with bulky inductors. However, conventional charge pump architectures usually show significant drawbacks and reliability problems, when used as on- chip high voltage generators. Hence, innovative charge pump architectures are required to realize the monolithic integration of charge pumps in high voltage applications. In this dissertation, three 4-phase charge pump architectures with the dynamic body biasing tech- nique and clock schemes with dead time techniques were proposed to overcome drawbacks such as body effect and reverse current problem of traditional Pelliconi charge pump. The influences of high voltage CMOS sandwich capacitors on the voltage gain and power efficiency of charge pumps were extensively investigated. The most reasonable 4-phase charge pump architecture with a suitable configuration of high voltage sandwich capacitors regarding the voltage gain and power efficiency was chosen to implement two high voltage ASICs in an advanced 120 V 0.35 μm high voltage CMOS technology. The first test chip operates successfully and is able to generate up to 120 V from a 3.7 V low voltage DC supply, which shows the highest output voltage among all the reported fully integrated CMOS charge pumps. The measurement results confirmed the benefits of the proposed charge pump architectures and clock schemes. The second chip providing a similar output voltage has a reduced chip size mainly due to decreased capacitor areas by increased clock frequencies. Fur- thermore, the second chip with an on-chip clock generator works independently of external clock signals which shows the feasibility of integrated charge pumps as part of high voltage SoCs. Based on the successful implementation of those high voltage CMOS ASICs, further discussions on the stability of the output voltage, levels of integration and limitations in the negative high voltage generation of high voltage CMOS charge pumps are held with the aid of simulation or measurement results. Feed- back regulation by adjusting the clock frequency or DC power supply is able to stabilize the voltage performance effectively while being easily integrated on-chip. Increasing the clock frequency can significantly reduce the required capacitor values which results in reduced chip sizes. An application example demonstrates the importance of fully integrated high voltage charge pumps. Besides, a new design methodology for the on-chip high voltage generation using CMOS technolo- gies was proposed. It contains a general design flow focusing mainly on the feasibility and reliability of high voltage CMOS ASICs and design techniques for on-chip high voltage generators. In this dissertation, it is proven that CMOS charge pumps using suitable architectures regarding the required chip size and circuit reliability are able to be used as on-chip high voltage generators for voltages beyond 100 V . Several methods to improve the circuit performance and to extend the functionalities of high voltage charge pumps are suggested for future works

    Novel Rail Clamp Architectures and Their Systematic Design

    Get PDF
    abstract: Rail clamp circuits are widely used for electrostatic discharge (ESD) protection in semiconductor products today. A step-by-step design procedure for the traditional RC and single-inverter-based rail clamp circuit and the design, simulation, implementation, and operation of two novel rail clamp circuits are described for use in the ESD protection of complementary metal-oxide-semiconductor (CMOS) circuits. The step-by-step design procedure for the traditional circuit is technology-node independent, can be fully automated, and aims to achieve a minimal area design that meets specified leakage and ESD specifications under all valid process, voltage, and temperature (PVT) conditions. The first novel rail clamp circuit presented employs a comparator inside the traditional circuit to reduce the value of the time constant needed. The second circuit uses a dynamic time constant approach in which the value of the time constant is dynamically adjusted after the clamp is triggered. Important metrics for the two new circuits such as ESD performance, latch-on immunity, clamp recovery time, supply noise immunity, fastest power-on time supported, and area are evaluated over an industry-standard PVT space using SPICE simulations and measurements on a fabricated 40 nm test chip.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Semiconductor Device Modeling, Simulation, and Failure Prediction for Electrostatic Discharge Conditions

    Get PDF
    Electrostatic Discharge (ESD) caused failures are major reliability issues in IC industry. Device modeling for ESD conditions is necessary to evaluate ESD robustness in simulation. Although SPICE model is accurate and efficient for circuit simulations in most cases, devices under ESD conditions operate in abnormal status. SPICE model cannot cover the device operating region beyond normal operation. Thermal failure is one of the main reasons to cause device failure under ESD conditions. A compact model is developed to predict thermal failure with circuit simulators. Instead of considering the detailed failure mechanisms, a failure temperature is introduced to indicate device failure. The developed model is implemented by a multiple-stage thermal network. P-N junction is the fundamental structure for ESD protection devices. An enhanced diode model is proposed and is used to simulate the device behaviors for ESD events. The model includes all physical effects for ESD conditions, which are voltage overshoot, self-heating effect, velocity saturation and thermal failure. The proposed model not only can fit the I-V and transient characteristics, but also can predict failure for different pulses. Safe Operating Area (SOA) is an important factor to evaluate the LDMOS performance. The transient SOA boundary is considered as power-defined. By placing the failure monitor under certain conditions, the developed modeling methodology can predict the boundary of transient SOA for any short pulse stress conditions. No matter failure happens before or after snapback phenomenon. Weibull distribution is popular to evaluate the dielectric lifetime for CVS. By using the transformative version of power law, the pulsing stresses are converted into CVS, and TDDB under ESD conditions for SiN MIMCAPs is analyzed. The thickness dependency and area independency of capacitor breakdown voltage is observed, which can be explained by the constant ?E model instead of conventional percolation model
    corecore