5,714 research outputs found

    Collective behaviours: from biochemical kinetics to electronic circuits

    Get PDF
    In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics.Comment: 15 pages, 6 figures; to appear on Scientific Reports: Nature Publishing Grou

    The effect of flotation cell shape on deinking behaviour

    Get PDF
    Studies were undertaken to investigate the deinking behaviour of different shaped deinking cells of the same volume. For comparative purposes, most oprational variables were kept constant, and the same injector was used throughout the study. The position of the injector, however, was varied in some cases to go along with the particular cell shape being studied. Three types of cell shapes were studied, (1) cylindrical with tangential air injection, (2) rectanular with vertical injection, and (3) rectangular with horizontal injection. Eucalyptus/toner slurries and news/mag wastepaper slurries were deinked. Flow patterns in the cells and the corresponding deinking efficiencies were measured. It was found that strong and excessive re-circulatory flows within the cells could under certain conditions be a major factor in reducing brightness lift. Vertical injection into a rectangular cell gave stable flow patterns, non-wavy froth removal and sustained brightness lift for a wide range of feed and airflow rates. Horizontal injection into a similar rectangular shaped cell exhibited quite different characteristics. High brightness lift was possible for certain conditions and not for others. Wavy froth and excessive recirculation flow patterns varied with feed and airflow. The cylindrical cell with tangential injection gave stable circulatory flow and stable froth removal at low flow rates but was unable to deink at high flows

    False memory ≠ false memory: DRM errors are unrelated to the misinformation effect

    Get PDF
    The DRM method has proved to be a popular and powerful, if controversial, way to study 'false memories'. One reason for the controversy is that the extent to which the DRM effect generalises to other kinds of memory error has been neither satisfactorily established nor subject to much empirical attention. In the present paper we contribute data to this ongoing debate. One hundred and twenty participants took part in a standard misinformation effect experiment, in which they watched some CCTV footage, were exposed to misleading post-event information about events depicted in the footage, and then completed free recall and recognition tests. Participants also completed a DRM test as an ostensibly unrelated filler task. Despite obtaining robust misinformation and DRM effects, there were no correlations between a broad range of misinformation and DRM effect measures (mean r  = -.01). This was not due to reliability issues with our measures or a lack of power. Thus DRM 'false memories' and misinformation effect 'false memories' do not appear to be equivalent

    Complete integrability of information processing by biochemical reactions

    Get PDF
    Statistical mechanics provides an effective framework to investigate information processing in biochemical reactions. Within such framework far-reaching analogies are established among (anti-) cooperative collective behaviors in chemical kinetics, (anti-)ferromagnetic spin models in statistical mechanics and operational amplifiers/flip-flops in cybernetics. The underlying modeling -- based on spin systems -- has been proved to be accurate for a wide class of systems matching classical (e.g. Michaelis--Menten, Hill, Adair) scenarios in the infinite-size approximation. However, the current research in biochemical information processing has been focusing on systems involving a relatively small number of units, where this approximation is no longer valid. Here we show that the whole statistical mechanical description of reaction kinetics can be re-formulated via a mechanical analogy -- based on completely integrable hydrodynamic-type systems of PDEs -- which provides explicit finite-size solutions, matching recently investigated phenomena (e.g. noise-induced cooperativity, stochastic bi-stability, quorum sensing). The resulting picture, successfully tested against a broad spectrum of data, constitutes a neat rationale for a numerically effective and theoretically consistent description of collective behaviors in biochemical reactions.Comment: 24 pages, 10 figures; accepted for publication in Scientific Report

    Onohi v. Atty Gen USA

    Get PDF
    Agenc
    corecore