3,873 research outputs found

    On Second-Order Monadic Monoidal and Groupoidal Quantifiers

    Get PDF
    We study logics defined in terms of second-order monadic monoidal and groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems, equivalently, by regular and context-free languages. We give a computational classification of the expressive power of these logics over strings with varying built-in predicates. In particular, we show that ATIME(n) can be logically characterized in terms of second-order monadic monoidal quantifiers

    Minimization for Generalized Boolean Formulas

    Full text link
    The minimization problem for propositional formulas is an important optimization problem in the second level of the polynomial hierarchy. In general, the problem is Sigma-2-complete under Turing reductions, but restricted versions are tractable. We study the complexity of minimization for formulas in two established frameworks for restricted propositional logic: The Post framework allowing arbitrarily nested formulas over a set of Boolean connectors, and the constraint setting, allowing generalizations of CNF formulas. In the Post case, we obtain a dichotomy result: Minimization is solvable in polynomial time or coNP-hard. This result also applies to Boolean circuits. For CNF formulas, we obtain new minimization algorithms for a large class of formulas, and give strong evidence that we have covered all polynomial-time cases

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    The descriptive complexity approach to LOGCFL

    Full text link
    Building upon the known generalized-quantifier-based first-order characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's ``hardest context-free language'' is LOGCFL-complete under quantifier-free BIT-free projections. We then prove that FO with unary groupoidal quantifiers is strictly more expressive with the BIT predicate than without. Considering a particular groupoidal quantifier, we prove that first-order logic with majority of pairs is strictly more expressive than first-order with majority of individuals. As a technical tool of independent interest, we define the notion of an aperiodic nondeterministic finite automaton and prove that FO translations are precisely the mappings computed by single-valued aperiodic nondeterministic finite transducers.Comment: 10 pages, 1 figur

    A Crevice on the Crane Beach: Finite-Degree Predicates

    Full text link
    First-order logic (FO) over words is shown to be equiexpressive with FO equipped with a restricted set of numerical predicates, namely the order, a binary predicate MSB0_0, and the finite-degree predicates: FO[Arb] = FO[<, MSB0_0, Fin]. The Crane Beach Property (CBP), introduced more than a decade ago, is true of a logic if all the expressible languages admitting a neutral letter are regular. Although it is known that FO[Arb] does not have the CBP, it is shown here that the (strong form of the) CBP holds for both FO[<, Fin] and FO[<, MSB0_0]. Thus FO[<, Fin] exhibits a form of locality and the CBP, and can still express a wide variety of languages, while being one simple predicate away from the expressive power of FO[Arb]. The counting ability of FO[<, Fin] is studied as an application.Comment: Submitte

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200

    A Logical Characterization of Constant-Depth Circuits over the Reals

    Full text link
    In this paper we give an Immerman's Theorem for real-valued computation. We define circuits operating over real numbers and show that families of such circuits of polynomial size and constant depth decide exactly those sets of vectors of reals that can be defined in first-order logic on R-structures in the sense of Cucker and Meer. Our characterization holds both non-uniformily as well as for many natural uniformity conditions.Comment: 24 pages, submitted to WoLLIC 202
    • …
    corecore