43 research outputs found

    There are 174 Subdivisions of the Hexahedron into Tetrahedra

    Full text link
    This article answers an important theoretical question: How many different subdivisions of the hexahedron into tetrahedra are there? It is well known that the cube has five subdivisions into 6 tetrahedra and one subdivision into 5 tetrahedra. However, all hexahedra are not cubes and moving the vertex positions increases the number of subdivisions. Recent hexahedral dominant meshing methods try to take these configurations into account for combining tetrahedra into hexahedra, but fail to enumerate them all: they use only a set of 10 subdivisions among the 174 we found in this article. The enumeration of these 174 subdivisions of the hexahedron into tetrahedra is our combinatorial result. Each of the 174 subdivisions has between 5 and 15 tetrahedra and is actually a class of 2 to 48 equivalent instances which are identical up to vertex relabeling. We further show that exactly 171 of these subdivisions have a geometrical realization, i.e. there exist coordinates of the eight hexahedron vertices in a three-dimensional space such that the geometrical tetrahedral mesh is valid. We exhibit the tetrahedral meshes for these configurations and show in particular subdivisions of hexahedra with 15 tetrahedra that have a strictly positive Jacobian

    Many 2-level polytopes from matroids

    Get PDF
    The family of 2-level matroids, that is, matroids whose base polytope is 2-level, has been recently studied and characterized by means of combinatorial properties. 2-level matroids generalize series-parallel graphs, which have been already successfully analyzed from the enumerative perspective. We bring to light some structural properties of 2-level matroids and exploit them for enumerative purposes. Moreover, the counting results are used to show that the number of combinatorially non-equivalent (n-1)-dimensional 2-level polytopes is bounded from below by cn5/2ρnc \cdot n^{-5/2} \cdot \rho^{-n}, where c0.03791727c\approx 0.03791727 and ρ14.88052854\rho^{-1} \approx 4.88052854.Comment: revised version, 19 pages, 7 figure

    Simple game induced manifolds

    Full text link
    Starting by a simple game QQ as a combinatorial data, we build up a cell complex M(Q)M(Q), whose construction resembles combinatorics of the permutohedron. The cell complex proves to be a combinatorial manifold; we call it the \textit{ simple game induced manifold.} By some motivations coming from polygonal linkages, we think of QQ and of M(Q)M(Q) as of\textit{ a quasilinkage} and the \textit{moduli space of the quasilinkage} respectively. We present some examples of quasilinkages and show that the moduli space retains many properties of moduli space of polygonal linkages. In particular, we show that the moduli space M(Q)M(Q) is homeomorphic to the space of stable point configurations on S1S^1, for an associated with a quasilinkage notion of stability

    The first higher Stasheff-Tamari orders are quotients of the higher Bruhat orders

    Get PDF
    We prove the conjecture that the higher Tamari orders of Dimakis and M\"uller-Hoissen coincide with the first higher Stasheff--Tamari orders. To this end, we show that the higher Tamari orders may be conceived as the image of an order-preserving map from the higher Bruhat orders to the first higher Stasheff--Tamari orders. This map is defined by taking the first cross-section of a cubillage of a cyclic zonotope. We provide a new proof that this map is surjective and show further that the map is full, which entails the aforementioned conjecture. We explain how order-preserving maps which are surjective and full correspond to quotients of posets. Our results connect the first higher Stasheff--Tamari orders with the literature on the role of the higher Tamari orders in integrable systems

    Neighborly and almost neighborly configurations, and their duals

    Get PDF
    This thesis presents new applications of Gale duality to the study of polytopes with extremal combinatorial properties. It consists in two parts. The first one is devoted to the construction of neighborly polytopes and oriented matroids. The second part concerns the degree of point configurations, a combinatorial invariant closely related to neighborliness. A d-dimensional polytope P is called neighborly if every subset of at most d/2 vertices of P forms a face. In 1982, Ido Shemer presented a technique to construct neighborly polytopes, which he named the "Sewing construction". With it he could prove that the number of neighborly polytopes in dimension d with n vertices grows superexponentially with n. One of the contributions of this thesis is the analysis of the sewing construction from the point of view of lexicographic extensions. This allows us to present a technique that we call the "Extended Sewing construction", that generalizes it in several aspects and simplifies its proof. We also present a second generalization that we call the "Gale Sewing construction". This construction exploits Gale duality an is based on lexicographic extensions of the duals of neighborly polytopes and oriented matroids. Thanks to this technique we obtain one of the main results of this thesis: a lower bound of ((r+d)^(((r+d)/2)^2)/(r^((r/2)^2)d^((d/2)^2)e^(3rd/4)) for the number of combinatorial types of neighborly polytopes of even dimension d and r+d+1 vertices. This result not only improves Shemer's bound, but it also improves the current best bounds for the number of polytopes. The combination of both new techniques also allows us to construct many non-realizable neighborly oriented matroids. The degree of a point configuration is the maximal codimension of its interior faces. In particular, a simplicial polytope is neighborly if and only if the degree of its set of vertices is [(d+1)/2]. For this reason, d-dimensional configurations of degree k are also known as "(d-k)-almost neighborly". The second part of the thesis presents various results on the combinatorial structure of point configurations whose degree is small compared to their dimension; specifically, those whose degree is smaller than [(d+1)/2], the degree of neighborly polytopes. The study of this problem comes motivated by Ehrhart theory, where a notion equivalent to the degree - for lattice polytopes - has been widely studied during the last years. In addition, the study of the degree is also related to the "generalized lower bound theorem" for simplicial polytopes, with Cayley polytopes and with Tverberg theory. Among other results, we present a complete combinatorial classification for point configurations of degree 1. Moreover, we show combinatorial restrictions in terms of the novel concept of "weak Cayley configuration" for configurations whose degree is smaller than a third of the dimension. We also introduce the notion of "codegree decomposition" and conjecture that any configuration whose degree is smaller than half the dimension admits a non-trivial codegree decomposition. For this conjecture, we show various motivations and we prove some particular cases

    Rigidity of frameworks on expanding spheres

    Get PDF
    A rigidity theory is developed for bar-joint frameworks in Rd+1\mathbb{R}^{d+1} whose vertices are constrained to lie on concentric dd-spheres with independently variable radii. In particular, combinatorial characterisations are established for the rigidity of generic frameworks for d=1d=1 with an arbitrary number of independently variable radii, and for d=2d=2 with at most two variable radii. This includes a characterisation of the rigidity or flexibility of uniformly expanding spherical frameworks in R3\mathbb{R}^{3}. Due to the equivalence of the generic rigidity between Euclidean space and spherical space, these results interpolate between rigidity in 1D and 2D and to some extent between rigidity in 2D and 3D. Symmetry-adapted counts for the detection of symmetry-induced continuous flexibility in frameworks on spheres with variable radii are also provided.Comment: 22 pages, 2 figures, updated reference
    corecore