4,508 research outputs found

    Expression of the circadian clock gene Period2 in the hippocampus: possible implications for synaptic plasticity and learned behaviour

    Get PDF
    Genes responsible for generating circadian oscillations are expressed in a variety of brain regions not typically associated with circadian timing. The functions of this clock gene expression are largely unknown, and in the present study we sought to explore the role of the Per2 (Period 2) gene in hippocampal physiology and learned behaviour. We found that PER2 protein is highly expressed in hippocampal pyramidal cell layers and that the expression of both protein and mRNA varies with a circadian rhythm. The peaks of these rhythms occur in the late night or early morning and are almost 180° out-of-phase with the expression rhythms measured from the suprachiasmatic nucleus of the same animals. The rhythms in Per2 expression are autonomous as they are present in isolated hippocampal slices maintained in culture. Physiologically, Per2-mutant mice exhibit abnormal long-term potentiation. The underlying mechanism is suggested by the finding that levels of phosphorylated cAMP-response-element-binding protein, but not phosphorylated extracellular-signal-regulated kinase, are reduced in hippocampal tissue from mutant mice. Finally, Per2-mutant mice exhibit deficits in the recall of trace, but not cued, fear conditioning. Taken together, these results provide evidence that hippocampal cells contain an autonomous circadian clock. Furthermore, the clock gene Per2 may play a role in the regulation of long-term potentiation and in the recall of some forms of learned behaviour

    High-voltage-activated Ca2+ currents and the excitability of pyramidal neurons in the hippocampal CA3 subfield in rats depend on corticosterone and time of day

    Get PDF
    This study tested the time-of-day dependence of the intrinsic postsynaptic properties of hippocampal CA3 pyramidal neurons. High-voltage-activated Ca2+ currents and the Ca2+- and voltage-dependent afterhyperpolarizations were examined in slices of rat brains obtained at four distinct time periods. Just after onset of the dark phase, the steady-state amplitude of the Ca2+ current (-1.24 ± 0.11 nA) was significantly greater (P < 0.03) than that of the light phase (-0.84 ± 0.06 nA). Over the entire time range, the amplitude of the Ca2+ current correlated with plasma corticosterone levels in a U-shaped function. Furthermore, depolarization-induced excitability during the dark phase exhibited an increased spike after depolarization (3.1 ± 0.1 mV) and a slower adaptation of the firing frequency (146 ± 18%). These findings point to a dynamic time-of-day dependence of the CA3 neuronal properties and postsynaptic Ca2+ currents.

    Genetic disruption of the core circadian clock impairs hippocampus-dependent memory

    Get PDF
    Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1−/− mice, which are arrhythmic under constant conditions, were examined for hippocampus-dependent memory, LTP at the Schaffer-collateral synapse, and signal transduction activity in the hippocampus. Bmal1−/− mice exhibit impaired contextual fear and spatial memory. Furthermore, LTP in hippocampal slices from Bmal1−/− mice is also significantly decreased relative to that from wild-type mice. Activation of Erk1,2 MAP kinase (MAPK) during training for contextual fear memory and diurnal oscillation of MAPK activity and cAMP in the hippocampus is also lost in Bmal1−/− mice, suggesting that the memory defects are due to reduction of the memory consolidation pathway in the hippocampus. We conclude that critical signaling events in the hippocampus required for memory depend on BMAL1

    The hormonal Zeitgeber melatonin: role as a circadian modulator in memory processing

    Get PDF
    The neuroendocrine substance melatonin is a hormone synthesized rhythmically by the pineal gland under the influence of the circadian system and alternating light/dark cycles. Melatonin has been shown to have broad applications, and consequently becoming a molecule of great controversy. Undoubtedly, however, melatonin plays an important role as a time cue for the endogenous circadian system. This review focuses on melatonin as a regulator in the circadian modulation of memory processing. Memory processes (acquisition, consolidation, and retrieval) are modulated by the circadian system. However, the mechanism by which the biological clock is rhythmically influencing cognitive processes remains unknown. We also discuss, how the circadian system by generating cycling melatonin levels can implant information about daytime into memory processing, depicted as day and nighttime differences in acquisition, memory consolidation and/or retrieval

    Antidepressant suppression of REM and spindle sleep impairs hippocampus-dependent learning and memory but fosters striatal-dependent strategies

    Get PDF
    REM sleep enhances hippocampus-dependent associative memory but has little impact on striatal-dependent procedural learning. Antidepressant medications like desipramine (DMI) inhibit rapid-eye-movement (REM) sleep but it is little understood how antidepressant treatments affect learning. We found that DMI strongly suppressed REM sleep in rats for several hours and impaired reconsolidation of a familiar maze and consolidation of moved baited positions (reversal learning) in a sleep-dependent fashion. Unexpectedly, DMI also reduced the spindle-rich transition-to-REM sleep state (TR) and spatial memory changes were more related to TR than to REM sleep. Working memory was unaffected, but overnight reference memory was significantly impaired and subjects increased reliance on non-hippocampal strategies. Procedural memory performance was positively correlated with increases in non-REM sleep after DMI serving to offset memory declines, partially preserving performance. Our results suggest that familiar memories are re-consolidated during REM sleep, reversal memories consolidated during TR, and procedural memories consolidated during non-REM sleep

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    Corticosteroids: way upstream

    Get PDF
    Studies into the mechanisms of corticosteroid action continue to be a rich bed of research, spanning the fields of neuroscience and endocrinology through to immunology and metabolism. However, the vast literature generated, in particular with respect to corticosteroid actions in the brain, tends to be contentious, with some aspects suffering from loose definitions, poorly-defined models, and appropriate dissection kits. Here, rather than presenting a comprehensive review of the subject, we aim to present a critique of key concepts that have emerged over the years so as to stimulate new thoughts in the field by identifying apparent shortcomings. This article will draw on experience and knowledge derived from studies of the neural actions of other steroid hormones, in particular estrogens, not only because there are many parallels but also because 'learning from differences' can be a fruitful approach. The core purpose of this review is to consider the mechanisms through which corticosteroids might act rapidly to alter neural signaling

    The Effects of Prenatal Exposure to Altered Melatonin Levels on Hippocampal Gene Expression in the Male Rat

    Get PDF
    The stability of the circadian rhythm for mammals depends on the levels of serotonin and melatonin, neurohormones that signal for lightness and darkness, respectively. Disruption in the stability of neurohormones has been shown to be a critical factor in psychopathological disorders in humans. For example, altering levels of melatonin in utero through administration of melatonin or the melatonin receptor antagonist, luzindole, has been shown to cause changes in developmental growth and adult behavior in the male rat. Analysis of relative adult hippocampal gene expression with RT-PCR revealed differences in ARNTL expression that suggested abnormality in clock gene expression of the rats that were prenatally exposed to altered levels of melatonin. Differences in the degree of plasticity as suggested by previous behavior testing did not result in differences in gene expression for GABA receptors or NMDA receptors. Morevoer, growth associated protein 43, GAP-43, a protein that is necessary for neuronal growth cones as well as long term learning has been found to be critical for axon and presynaptic terminal formation and retention in other studies, but hippocampal gene expression in our study showed no significant alteration after exposure to various maternal melatonin levels. However, ARNTL is a key regulatory component of clock genes and the circadian cycle so that alterations in the expression of thi critical gene may lead to critical changes in neuronal growth and plasticity. Our data support the conclusion that the manipulation of maternal melatonin levels alters the brain development and the circadian cycles that may lead to physiological and behavioral abnormalities in adult offspring
    corecore