342 research outputs found

    Towards the AlexNet Moment for Homomorphic Encryption: HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs

    Get PDF
    Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this paper, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved a sufficient security level (> 80 bit) and reasonable classification accuracy (99%) and (77.55%) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> 8,000) without extra overhead

    Homomorphic Encryption and Cryptanalysis of Lattice Cryptography

    Get PDF
    The vast amount of personal data being collected and analyzed through internet connected devices is vulnerable to theft and misuse. Modern cryptography presents several powerful techniques that can help to solve the puzzle of how to harness data for use while at the same time protecting it---one such technique is homomorphic encryption that allows computations to be done on data while it is still encrypted. The question of security for homomorphic encryption relates to the broader field of lattice cryptography. Lattice cryptography is one of the main areas of cryptography that promises to be secure even against quantum computing. In this dissertation, we will touch on several aspects of homomorphic encryption and its security based on lattice cryptography. Our main contributions are: 1. proving some heuristics that are used in major results in the literature for controlling the error size in bootstrapping for fully homomorphic encryption, 2. presenting a new fully homomorphic encryption scheme that supports k-bit arbitrary operations and achieves an asymptotic ciphertext expansion of one, 3. thoroughly studying certain attacks against the Ring Learning with Errors problem, 4. precisely characterizing the performance of an algorithm for solving the Approximate Common Divisor problem

    A Survey of Homomorphic Encryption for Nonspecialists

    Get PDF

    Integer-based fully homomorphic encryption

    Get PDF
    The concept of fully homomorphic encryption has been considered the holy grail of cryptography since the discovery of secure public key cryptography in the 1970s. Fully homomorphic encryption allows arbitrary computation on encrypted data to be performed securely. Craig Gentry\u27s new method of bootstrapping introduced in 2009 provides a technique for constructing fully homomorphic cryptosystems. In this paper we explore one such bootstrappable system based on simple integer arithmetic in a manner that someone without a high level of experience in homomorphic encryption can readily understand. Further, we present an implementation of the system as well as a lattice- based attack. We present performance results of our implementation under various parameter choices and the resistance of the system to the lattice-based attack under those parameters. Unfortunately, while the system is very interesting from a theoretical point of view, the results show that it is still not feasible for use

    Cloud-based homomorphic encryption for privacy-preserving machine learning in clinical decision support

    Get PDF
    While privacy and security concerns dominate public cloud services, Homomorphic Encryption (HE) is seen as an emerging solution that ensures secure processing of sensitive data via untrusted networks in the public cloud or by third-party cloud vendors. It relies on the fact that some encryption algorithms display the property of homomorphism, which allows them to manipulate data meaningfully while still in encrypted form; although there are major stumbling blocks to overcome before the technology is considered mature for production cloud environments. Such a framework would find particular relevance in Clinical Decision Support (CDS) applications deployed in the public cloud. CDS applications have an important computational and analytical role over confidential healthcare information with the aim of supporting decision-making in clinical practice. Machine Learning (ML) is employed in CDS applications that typically learn and can personalise actions based on individual behaviour. A relatively simple-to-implement, common and consistent framework is sought that can overcome most limitations of Fully Homomorphic Encryption (FHE) in order to offer an expanded and flexible set of HE capabilities. In the absence of a significant breakthrough in FHE efficiency and practical use, it would appear that a solution relying on client interactions is the best known entity for meeting the requirements of private CDS-based computation, so long as security is not significantly compromised. A hybrid solution is introduced, that intersperses limited two-party interactions amongst the main homomorphic computations, allowing exchange of both numerical and logical cryptographic contexts in addition to resolving other major FHE limitations. Interactions involve the use of client-based ciphertext decryptions blinded by data obfuscation techniques, to maintain privacy. This thesis explores the middle ground whereby HE schemes can provide improved and efficient arbitrary computational functionality over a significantly reduced two-party network interaction model involving data obfuscation techniques. This compromise allows for the powerful capabilities of HE to be leveraged, providing a more uniform, flexible and general approach to privacy-preserving system integration, which is suitable for cloud deployment. The proposed platform is uniquely designed to make HE more practical for mainstream clinical application use, equipped with a rich set of capabilities and potentially very complex depth of HE operations. Such a solution would be suitable for the long-term privacy preserving-processing requirements of a cloud-based CDS system, which would typically require complex combinatorial logic, workflow and ML capabilities
    • …
    corecore