6,818 research outputs found

    Notions and relations for RKA-secure permutation and function families

    Get PDF
    The theory of designing block ciphers is mature, having seen signi¯cant progress since the early 1990s for over two decades, especially during the AES devel- opment e®ort. Nevertheless, interesting directions exist, in particular in the study of the provable security of block ciphers along similar veins as public-key primitives, i.e. the notion of pseudorandomness (PRP) and indistinguishability (IND). Furthermore, recent cryptanalytic progress has shown that block ciphers well designed against known cryptanalysis techniques including related-key attacks (RKA) may turn out to be less secure against related-key attacks than expected. The notion of provable security of block ciphers against related-key attacks was initiated by Bellare and Kohno, and sub- sequently treated by Lucks. Concrete block cipher constructions were proposed therein with provable security guarantees. In this paper, we are interested in the security no- tions for RKA-secure block ciphers

    Necessary conditions for designing secure stream ciphers with the minimal internal states

    Get PDF
    After the introduction of some stream ciphers with the minimal internal state, the design idea of these ciphers (i.e. the design of stream ciphers by using a secret key, not only in the initialization but also permanently in the keystream generation) has been developed. The idea lets to design lighter stream ciphers that they are suitable for devices with limited resources such as RFID, WSN. We present necessary conditions for designing a secure stream cipher with the minimal internal state. Based on the conditions, we propose Fruit-128 stream cipher for 128-bit security against all types of attacks. Our implementations showed that the area size of Fruit-128 is about 25.2% smaller than that of Grain-128a. The discussions are presented that Fruit-128 is more resistant than Grain-128a to some attacks such as Related key chosen IV attack. Sprout, Fruit-v2 and Plantlet ciphers are vulnerable to time-memory-data trade-off (TMDTO) distinguishing attacks. For the first time, IV bits were permanently used to strengthen Fruit-128 against TMDTO attacks. We will show that if IV bits are not permanently available during the keystream production step, we can eliminate the IV mixing function from it. In this case, security level decreases to 69-bit against TMDTO distinguishing attacks (that based on the application might be tolerable). Dynamic initialization is another contribution of the paper (that it can strengthen initialization of all stream ciphers with low area cost)

    KLEIN: A New Family of Lightweight Block Ciphers

    Get PDF
    Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    Performance Analysis Of Secured Synchronous Stream Ciphers

    Get PDF
    The new information and communication technologies require adequate security. In the past decades ,we have witnessed an explosive growth of the digital storage and communication of data ,triggered by some important breakthroughs such as the Internet and the expansive growth of wireless communications. In the world of cryptography ,stream ciphers are known as primitives used to ensure privacy over communication channel and these are widely used for fast encryption of sensitive data. Lots of old stream ciphers that have been formerly used no longer be considered secure ,because of their vulnerability to newly developed cryptanalysis techniques. Many designs stream ciphers have been proposed in an effort to find a proper candidate to be chosen as world standard for data encryption. From these designs, the stream ciphers which are Trivium,Edon80 and Mickey are implemented in ‘c’ language with out affecting their security .Actually these algorithms are particularly suited for hardware oriented environments which provides considerable security and efficiency aspects. We will be targeting hardware applications, and good measure for efficiency of a stream cipher in this environment is the number of key stream bits generated per cycle per gate. For good efficiency we are approaching two ways .One approach is minimizing the number of gates.The other approach is to dramatically increase the number of bits for cycle. This allows reducing the clock frequency at the cost of an increased gate count. Apart from the implementation the analysis which includes the security of these algorithms against some attacks related to stream ciphers such as guess and deterministic attacks, correlation attacks, divide and conquer attacks and algebraic attacks are presented
    corecore