2,169 research outputs found

    Bifinite Chu Spaces

    Full text link
    This paper studies colimits of sequences of finite Chu spaces and their ramifications. Besides generic Chu spaces, we consider extensional and biextensional variants. In the corresponding categories we first characterize the monics and then the existence (or the lack thereof) of the desired colimits. In each case, we provide a characterization of the finite objects in terms of monomorphisms/injections. Bifinite Chu spaces are then expressed with respect to the monics of generic Chu spaces, and universal, homogeneous Chu spaces are shown to exist in this category. Unanticipated results driving this development include the fact that while for generic Chu spaces monics consist of an injective first and a surjective second component, in the extensional and biextensional cases the surjectivity requirement can be dropped. Furthermore, the desired colimits are only guaranteed to exist in the extensional case. Finally, not all finite Chu spaces (considered set-theoretically) are finite objects in their categories. This study opens up opportunities for further investigations into recursively defined Chu spaces, as well as constructive models of linear logic

    Linear logic for constructive mathematics

    Full text link
    We show that numerous distinctive concepts of constructive mathematics arise automatically from an interpretation of "linear higher-order logic" into intuitionistic higher-order logic via a Chu construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of classical concepts using the choice between multiplicative and additive linear connectives. Linear logic thus systematically "constructivizes" classical definitions and deals automatically with the resulting bookkeeping, and could potentially be used directly as a basis for constructive mathematics in place of intuitionistic logic.Comment: 39 page

    Hammering towards QED

    Get PDF
    This paper surveys the emerging methods to automate reasoning over large libraries developed with formal proof assistants. We call these methods hammers. They give the authors of formal proofs a strong “one-stroke” tool for discharging difficult lemmas without the need for careful and detailed manual programming of proof search. The main ingredients underlying this approach are efficient automatic theorem provers that can cope with hundreds of axioms, suitable translations of the proof assistant’s logic to the logic of the automatic provers, heuristic and learning methods that select relevant facts from large libraries, and methods that reconstruct the automatically found proofs inside the proof assistants. We outline the history of these methods, explain the main issues and techniques, and show their strength on several large benchmarks. We also discuss the relation of this technology to the QED Manifesto and consider its implications for QED-like efforts.Blanchette’s Sledgehammer research was supported by the Deutsche Forschungs- gemeinschaft projects Quis Custodiet (grants NI 491/11-1 and NI 491/11-2) and Hardening the Hammer (grant NI 491/14-1). Kaliszyk is supported by the Austrian Science Fund (FWF) grant P26201. Sledgehammer was originally supported by the UK’s Engineering and Physical Sciences Research Council (grant GR/S57198/01). Urban’s work was supported by the Marie-Curie Outgoing International Fellowship project AUTOKNOMATH (grant MOIF-CT-2005-21875) and by the Netherlands Organisation for Scientific Research (NWO) project Knowledge-based Automated Reasoning (grant 612.001.208).This is the final published version. It first appeared at http://jfr.unibo.it/article/view/4593/5730?acceptCookies=1

    Formalising Mathematics in Simple Type Theory

    Get PDF
    Despite the considerable interest in new dependent type theories, simple type theory (which dates from 1940) is sufficient to formalise serious topics in mathematics. This point is seen by examining formal proofs of a theorem about stereographic projections. A formalisation using the HOL Light proof assistant is contrasted with one using Isabelle/HOL. Harrison's technique for formalising Euclidean spaces is contrasted with an approach using Isabelle/HOL's axiomatic type classes. However, every formal system can be outgrown, and mathematics should be formalised with a view that it will eventually migrate to a new formalism
    • …
    corecore