3,940 research outputs found

    On the order of countable graphs

    Get PDF
    A set of graphs is said to be independent if there is no homomorphism between distinct graphs from the set. We consider the existence problems related to the independent sets of countable graphs. While the maximal size of an independent set of countable graphs is 2^omega the On Line problem of extending an independent set to a larger independent set is much harder. We prove here that singletons can be extended (``partnership theorem''). While this is the best possible in general, we give structural conditions which guarantee independent extensions of larger independent sets. This is related to universal graphs, rigid graphs and to the density problem for countable graphs

    K3K_3-WORM colorings of graphs: Lower chromatic number and gaps in the chromatic spectrum

    Get PDF
    A K3K_3-WORM coloring of a graph GG is an assignment of colors to the vertices in such a way that the vertices of each K3K_3-subgraph of GG get precisely two colors. We study graphs GG which admit at least one such coloring. We disprove a conjecture of Goddard et al. [Congr. Numer., 219 (2014) 161--173] who asked whether every such graph has a K3K_3-WORM coloring with two colors. In fact for every integer kā‰„3k\ge 3 there exists a K3K_3-WORM colorable graph in which the minimum number of colors is exactly kk. There also exist K3K_3-WORM colorable graphs which have a K3K_3-WORM coloring with two colors and also with kk colors but no coloring with any of 3,ā€¦,kāˆ’13,\dots,k-1 colors. We also prove that it is NP-hard to determine the minimum number of colors and NP-complete to decide kk-colorability for every kā‰„2k \ge 2 (and remains intractable even for graphs of maximum degree 9 if k=3k=3). On the other hand, we prove positive results for dd-degenerate graphs with small dd, also including planar graphs. Moreover we point out a fundamental connection with the theory of the colorings of mixed hypergraphs. We list many open problems at the end.Comment: 18 page

    Local Graph Coloring and Index Coding

    Full text link
    We present a novel upper bound for the optimal index coding rate. Our bound uses a graph theoretic quantity called the local chromatic number. We show how a good local coloring can be used to create a good index code. The local coloring is used as an alignment guide to assign index coding vectors from a general position MDS code. We further show that a natural LP relaxation yields an even stronger index code. Our bounds provably outperform the state of the art on index coding but at most by a constant factor.Comment: 14 Pages, 3 Figures; A conference version submitted to ISIT 2013; typos correcte

    Topological lower bounds for the chromatic number: A hierarchy

    Full text link
    This paper is a study of ``topological'' lower bounds for the chromatic number of a graph. Such a lower bound was first introduced by Lov\'asz in 1978, in his famous proof of the \emph{Kneser conjecture} via Algebraic Topology. This conjecture stated that the \emph{Kneser graph} \KG_{m,n}, the graph with all kk-element subsets of {1,2,...,n}\{1,2,...,n\} as vertices and all pairs of disjoint sets as edges, has chromatic number nāˆ’2k+2n-2k+2. Several other proofs have since been published (by B\'ar\'any, Schrijver, Dolnikov, Sarkaria, Kriz, Greene, and others), all of them based on some version of the Borsuk--Ulam theorem, but otherwise quite different. Each can be extended to yield some lower bound on the chromatic number of an arbitrary graph. (Indeed, we observe that \emph{every} finite graph may be represented as a generalized Kneser graph, to which the above bounds apply.) We show that these bounds are almost linearly ordered by strength, the strongest one being essentially Lov\'asz' original bound in terms of a neighborhood complex. We also present and compare various definitions of a \emph{box complex} of a graph (developing ideas of Alon, Frankl, and Lov\'asz and of \kriz). A suitable box complex is equivalent to Lov\'asz' complex, but the construction is simpler and functorial, mapping graphs with homomorphisms to Z2\Z_2-spaces with Z2\Z_2-maps.Comment: 16 pages, 1 figure. Jahresbericht der DMV, to appea

    Generalisation : graphs and colourings

    Get PDF
    The interaction between practice and theory in mathematics is a central theme. Many mathematical structures and theories result from the formalisation of a real problem. Graph Theory is rich with such examples. The graph structure itself was formalised by Leonard Euler in the quest to solve the problem of the Bridges of Kƶnigsberg. Once a structure is formalised, and results are proven, the mathematician seeks to generalise. This can be considered as one of the main praxis in mathematics. The idea of generalisation will be illustrated through graph colouring. This idea also results from a classic problem, in which it was well known by topographers that four colours suffice to colour any map such that no countries sharing a border receive the same colour. The proof of this theorem eluded mathematicians for centuries and was proven in 1976. Generalisation of graphs to hypergraphs, and variations on the colouring theme will be discussed, as well as applications in other disciplines.peer-reviewe

    Graphs with tiny vector chromatic numbers and huge chromatic numbers

    Get PDF
    Karger, Motwani, and Sudan [J. ACM, 45 (1998), pp. 246-265] introduced the notion of a vector coloring of a graph. In particular, they showed that every k-colorable graph is also vector k-colorable, and that for constant k, graphs that are vector k-colorable can be colored by roughly Ī”^(1 - 2/k) colors. Here Ī” is the maximum degree in the graph and is assumed to be of the order of n^5 for some 0 < Ī“ < 1. Their results play a major role in the best approximation algorithms used for coloring and for maximum independent sets. We show that for every positive integer k there are graphs that are vector k-colorable but do not have independent sets significantly larger than n/Ī”^(1- 2/k) (and hence cannot be colored with significantly fewer than Ī”^(1-2/k) colors). For k = O(log n/log log n) we show vector k-colorable graphs that do not have independent sets of size (log n)^c, for some constant c. This shows that the vector chromatic number does not approximate the chromatic number within factors better than n/polylogn. As part of our proof, we analyze "property testing" algorithms that distinguish between graphs that have an independent set of size n/k, and graphs that are "far" from having such an independent set. Our bounds on the sample size improve previous bounds of Goldreich, Goldwasser, and Ron [J. ACM, 45 (1998), pp. 653-750] for this problem
    • ā€¦
    corecore