126 research outputs found

    Ergonomic, adaptable keyboard for fast data entry on mobile computing devices

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (leaves 22-24).The usefulness of modem portable computational devices such as cellular phones and portable digital assistants (PDAs) is currently limited by the lack of an effective method for text entry. The currently available input options (such as the 12-key phone pad and PDA touch screens) are a quarter to a third of the speed of the standard desktop QWERTY keyboards. Therefore, it is slow and frustrating for people to use these systems for any significant text input, such as writing emails, taking notes in a meeting, or writing down thoughts while on-the-go. The proposed solution is a one-handed, hand-held, wireless, portable keyboard that would allow the mobile device user to achieve speeds closer to the desktop standard while performing text-entry tasks. Previously developed handheld input devices employ unfamiliar typing systems, are too large, or are not ergonomically comfortable, which may be the reasons they have not been widely adopted by the public. The device described in this paper is small enough to store in one's pocket, is inconspicuous during use, and is adjustable so that the keys reach the fingers in their natural curved position. One interface point allows each finger to control multiple buttons thereby preventing the fingers from, needing to move into uncomfortable positions.(cont.) These features were incorporated into a prototype that proves the feasibility of a compact and comfortable hand-held keyboard. The device also has potential as an ergonomic replacement to the standard desktop keyboard. Unlike traditional keyboards it allows the typist to be relaxed and mobile eliminating some risk factors for repetitive strain injury.by Alexander Mekelburg.S.B

    A comparison of consecutive and concurrent input text entry techniques for mobile phones

    Full text link

    Adaptive Text Entry for Mobile Devices

    Get PDF

    Designing wearable interfaces for blind people

    Get PDF
    Tese de mestrado, Engenharia Informática (Arquitectura, Sistemas e Redes de Computadores), Universidade de Lisboa, faculdade de Ciências, 2015Hoje em dia os dispositivos com ecrã táctil, estão cada vez mais onipresentes. Até recentemente, a maioria dos ecrãs sensíveis ao toque forneciam poucos recursos de acessibilidade para deficientes visuais, deixando-os inutilizáveis. Sendo uma tecnologia tão presente no nosso quotidiano, como em telemóveis e tablets. Estes dispositivos são cada vez mais essenciais para a nossa vida, uma vez que, guardam muita informação pessoal, por exemplo, o pagamento através carteiras eletrónicas. A falta de acessibilidade deste tipo de ecrãs devem-se ao facto de estas interfaces serem baseadas no que os utilizadores veem no ecrã e em tocar no conteúdo apresentado neste. Isso torna-se num grande problema quando uma pessoa deficiente visual tenta usar estas interfaces. No mercado existem algumas soluções mas são quase todas baseadas em retorno áudio. Esta solução não é a melhor quando se trata de informação pessoal que a pessoa deseja manter privada. Por exemplo quando um utilizador está num autocarro e recebe uma mensagem, esta é lida por um leitor de ecrã através das colunas do dispositivo. Esta solução é prejudicial para a privacidade do utilizador, pois todas a pessoas `a sua volta irão ouvir o conteúdo da mensagem. Uma solução para este problema, poderá ser a utilização de vibração e de teclas físicas, que retiram a necessidade da utilização de leitores de ecrã. Contudo, para a navegação em menus a problemática mantém-se. Uma maneira de resolver este problema é através da utilização de uma interface baseada em gestos. Este tipo de interface é uma forma flexível e intuitiva de interação com este dispositivos. Até hoje, muitas abordagens têm vindo a apresentar soluções, no entanto não resolvem todos os pontos referidos. De uma maneira ou de outra estas abordagens terão de ser complementadas com outros dispositivos. Guerreiro e colegas (2012), apresentaram um protótipo que possibilita a leitura texto através de vibração, mas todo o impacto de uma utilização no dia a dia não é tido em conta. Um outro estudo realizado por Myung-Chul Cho (2002) apresenta um par de luvas para escrita codificada pelo alfabeto Braile, contudo não é testado para uma utilização com integração de uma componente de leitura, sem ser o retorno áudio. Dois outros estudos destacam-se, relativamente à utilização de gestos para navegação no dispositivo. Ruiz (2011), efetuou uma elicitação de gestos no ar, no entanto, eles não incluem pessoas invisuais no estudo, o que poderá levar à exclusão de tais utilizadores. Outro estudo apresentado por Kane (2011), inclui pessoas invisuais e destina-se a interações com gestos mas exigindo contacto físico com os ecrãs tácteis. A abordagem apresentada neste estudo integra as melhores soluções apresentadas num único dispositivo. O nosso objectivo principal é tornar os dispositivos de telemóveis mais acessíveis a pessoas invisuais, de forma serem integrados no seu quotidiano. Para isso, desenvolvemos uma interface baseada num par de luvas. O utilizador pode usá-las e com elas ler e escrever mensagens e ainda fazer gestos para outras tarefas. Este par de luvas aproveita o conhecimento sobre Braille por parte dos utilizadores para ler e escrever informação textual. Para a característica de leitura instalámos seis motores de vibração nos dedos da luva, no dedo indicador, no dedo do meio e no dedo anelar, de ambas as mãos. Estes motores simulam a configuração das teclas de uma máquina de escrever Braille, por exemplo, a Perkins Brailler. Para a parte de escrita, instalámos botões de pressão na ponta destes mesmos dedos, sendo cada um representante de um ponto de uma célula de Braille. Para a detecção de gestos optámos por uma abordagem através de um acelerómetro. Este encontra-se colocado nas costas da mão da luva. Para uma melhor utilização a luva é composta por duas camadas, e desta forma é possível instalar todos os componente entre as duas camadas de tecido, permitindo ao utilizador calçar e descalçar as luvas sem se ter que preocupar com os componentes eletrónicos. A construção das luvas assim como todos os testes realizados tiveram a participação de um grupo de pessoas invisuais, alunos e professores, da Fundação Raquel e Martin Sain. Para avaliarmos o desempenho do nosso dispositivo por invisuais realizámos alguns teste de recepcão (leitura) e de envio de mensagens (escrita). No teste de leitura foi realizado com um grupo apenas de pessoas invisuais. O teste consistiu em, receber letras em Braille, onde o utilizador replicava as vibrações sentidas, com os botões das luvas. Para isso avaliámos as taxas de reconhecimento de caracteres. Obtivemos uma média de 31 %, embora estes resultados sejam altamente dependentes das habilidades dos utilizadores. No teste de escrita, foi pedido uma letra ao utilizador e este escrevia em braille utilizando as luvas. O desempenho nesta componente foi em média 74 % de taxa de precisão. A maioria dos erros durante este teste estão ligados a erros, onde a diferença entre a palavra inicial e a escrita pelo utilizador, é de apenas um dedo. Estes testes foram bastante reveladores, relativamente à possível utilização destas luvas por pessoas invisuais. Indicaram-nos que os utilizadores devem ser treinados previamente para serem maximizados os resultados, e que pode ser necessário um pouco de experiencia com o dispositivo. O reconhecimento de gestos permite ao utilizador executar várias tarefas com um smartphone, tais como, atender/rejeitar uma chamada e navegar em menus. Para avaliar que gestos os utilizadores invisuais e normovisuais sugerem para a execução de tarefas em smartphones, realizámos um estudo de elicitação. Este estudo consiste em pedir aos utilizadores que sugiram gestos para a realização de tarefas. Descobrimos que a maioria dos gestos inventados pelos participantes tendem a ser físicos, em contexto, discreto e simples, e que utilizam apenas um ´unico eixo espacial. Concluímos também que existe um consenso, entre utilizadores, para todas as tarefas propostas. Além disso, o estudo de elicitação revelou que as pessoas invisuais preferem gestos mais simples, opondo-se a uma preferência por gestos mais complexos por parte de pessoas normovisuais. Sendo este um dispositivo que necessita de treino para reconhecimento de gestos, procurámos saber qual o tipo de treino é mais indicado para a sua utilização. Com os resultados obtidos no estudo de elicitação, comparámos treinos dos utilizadores individuais, treinos entre as das populações (invisuais e normovisuais) e um treino com ambas as populações (global). Descobrimos que um treino personalizado, ou seja, feito pelo próprio utilizador, é muito mais eficaz que um treino da população e um treino global. O facto de o utilizador poder enviar e receber mensagens, sem estar dependente de vários dispositivos e/ou aplicações contorna, as tão levantadas, questões de privacidade. Com o mesmo dispositivo o utilizador pode, ainda, navegar nos menus do seu smartphone, através de gestos simples e intuitivos. Os nossos resultados sugerem que será possível a utilização de um dispositivo wearable, no seio da comunidade invisual. Com o crescimento exponencial do mercado wearable e o esforço que a comunidade académica está a colocar nas tecnologias de acessibilidade, ainda existe uma grande margem para melhorar. Com este projeto, espera-se que os dispositivos portáteis de apoio irão desempenhar um papel importante na integração social das pessoas com deficiência, criando com isto uma sociedade mais igualitária e justa.Nowadays touch screens are ubiquitous, present in almost all modern devices. Most touch screens provide few accessibility features for blind people, leaving them partly unusable. There are some solutions, based on audio feedback, that help blind people to use touch screens in their daily tasks. The problem with those solutions raises privacy issues, since the content on screen is transmitted through the device speakers. Also, these screen readers make the interaction slow, and they are not easy to use. The main goal of this project is to develop a new wearable interface that allows blind people to interact with smartphones. We developed a pair of gloves that is capable to recognise mid-air gestures, and also allows the input and output of text. To evaluate the usability of input and output, we conducted a user study to assess character recognition and writing performance. Character recognition rates were highly user-dependent, and writing performance showed some problems, mostly related to one-finger issues. Then, we conducted an elicitation study to assess what type of gestures blind and sighted people suggest. Sighted people suggested more complex gestures, compared with blind people. However, all the gestures tend to be physical, in-context, discrete and simple, and use only a single axis. We also found that a training based on the user’s gestures is better for recognition accuracy. Nevertheless, the input and output text components still require new approaches to improve users performance. Still, this wearable interface seems promising for simple actions that do not require cognitive load. Overall, our results suggest that we are on track to make possible blind people interact with mobile devices in daily life

    Ergonomic, adaptable keyboard for fast data entry on mobile computing devices

    Get PDF
    ABSTRACT The usefulness of modern portable computational devices such as cellular phones and portable digital assistants (PDAs) is currently limited by the lack of an effective method for text entry. The currently available input options (such as the 12-key phone pad and PDA touch screens) are a quarter to a third of the speed of the standard desktop QWERTY keyboards. Therefore, it is slow and frustrating for people to use these systems for any significant text input, such as writing emails, taking notes in a meeting, or writing down thoughts while on-the-go. The proposed solution is a one-handed, hand-held, wireless, portable keyboard that would allow the mobile device user to achieve speeds closer to the desktop standard while performing text-entry tasks. Previously developed handheld input devices employ unfamiliar typing systems, are too large, or are not ergonomically comfortable, which may be the reasons they have not been widely adopted by the public. The device described in this paper is small enough to store in one's pocket, is inconspicuous during use, and is adjustable so that the keys reach the fingers in their natural curved position. One interface point allows each finger to control multiple buttons thereby preventing the fingers from needing to move into uncomfortable positions. These features were incorporated into a prototype that proves the feasibility of a compact and comfortable hand-held keyboard. The device also has potential as an ergonomic replacement to the standard desktop keyboard. Unlike traditional keyboards it allows the typist to be relaxed and mobile eliminating some risk factors for repetitive strain injury. Although the QWERTY keyboard is the current PC input standard, there are ergonomic problems associated with stationary desktop keyboards. They force the users to sit at their computers with their backs, arms and wrists stationary (and often tense) for long periods of time while they type. Typing guidelines therefore encourage computer users to take breaks to get up and move around. A better solution is a keyboard that doesn't keep their body rigid -one that lets the user be relaxed and mobile while typing In this paper a hand-held, portable, wireless keyboard is introduced that may improve both mobile text entry and traditional desktop keyboard data entry. The prototype device is the first to be compact enough for comfortable storage and discreet use while also placing the fingers in a comfortable, natural position. It provides the ability to utilize existing typing skills by being able to mimic the layout of QWERTY keyboard. The device can be used in one hand for quick on-the-go text entry, or two could be used simultaneously for faster typin

    Towards high quality text entry on smartwatches

    Get PDF
    Smartwatches now provide users with access to many applications on smartphones direct from their wrists, without the need to touch their smartphone. While applications such as email, messaging, calendar and social networking provide views on the watch, there is normally no text entry method so users cannot reply on the same device. Here we introduce requirements for smartwatch text entry, an optimised alphabetic layout and present a prototype implementation together with preliminary user feedback. While raising some problems, the feedback gives indicates that reasonable quality and speed is achievable on a smartwatch and encourages our future work

    Fine-Tunning a MAP Error Corrections Algorithm for Five-Key Chording Keyboards

    Get PDF
    Different typing devices lead to different typing error patterns. In addition, different persons using the same device have different error patterns. Considering this, we propose and evaluate a spelling algorithm specifically designed for a five-key chording keyboard. It uses the maximum a posteriori probability rule, the probabilities that one character is typed for another, named confusion probabilities, and a dictionary model. Our study shows that the proposed algorithm reduces the substitution error rate from 7.60% to 1.25%. In comparison, MsWord and iSpell reduce the substitution error rates to 3.12% and 3.94%, respectively. The error rate can be further reduced to 1.15% by using individual confusion matrices for each user
    corecore