423 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Artificial intelligence to enhance aerodynamic shape optimisation of the Aegis UAV

    Get PDF
    This article presents an optimisation framework that uses stochastic multi-objective optimisation, combined with an Artificial Neural Network (ANN), and describes its application to the aerodynamic design of aircraft shapes. The framework uses the Multi-Objective Particle Swarm Optimisation (MOPSO) algorithm and the obtained results confirm that the proposed technique provides highly optimal solutions in less computational time than other approaches to the same design problem. The main idea was to focus computational effort on worthwhile design solutions rather than exploring and evaluating all possible solutions in the design space. It is shown that the number of valid solutions obtained using ANN-MOPSO compared to MOPSO for 3000 evaluations grew from 529 to 1006 (90% improvement) with a penalty of only 8.3% (11 min) in computational time. It is demonstrated that including an ANN, the ANN-MOPSO with 3000 evaluations produced a larger number of valid solutions than the MOPSO with 5500 evaluations, and in 33% less computational time (64 min). This is taken as confirmation of the potential power of ANNs when applied to this type of design problem

    Multiple 2D self organising map network for surface reconstruction of 3D unstructured data

    Get PDF
    Surface reconstruction is a challenging task in reverse engineering because it must represent the surface which is similar to the original object based on the data obtained. The data obtained are mostly in unstructured type whereby there is not enough information and incorrect surface will be obtained. Therefore, the data should be reorganised by finding the correct topology with minimum surface error. Previous studies showed that Self Organising Map (SOM) model, the conventional surface approximation approach with Non Uniform Rational B-Splines (NURBS) surfaces, and optimisation methods such as Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimisation (PSO) methods are widely implemented in solving the surface reconstruction. However, the model, approach and optimisation methods are still suffer from the unstructured data and accuracy problems. Therefore, the aims of this research are to propose Cube SOM (CSOM) model with multiple 2D SOM network in organising the unstructured surface data, and to propose optimised surface approximation approach in generating the NURBS surfaces. GA, DE and PSO methods are implemented to minimise the surface error by adjusting the NURBS control points. In order to test and validate the proposed model and approach, four primitive objects data and one medical image data are used. As to evaluate the performance of the proposed model and approach, three performance measurements have been used: Average Quantisation Error (AQE) and Number Of Vertices (NOV) for the CSOM model while surface error for the proposed optimised surface approximation approach. The accuracy of AQE for CSOM model has been improved to 64% and 66% when compared to 2D and 3D SOM respectively. The NOV for CSOM model has been reduced from 8000 to 2168 as compared to 3D SOM. The accuracy of surface error for the optimised surface approximation approach has been improved to 7% compared to the conventional approach. The proposed CSOM model and optimised surface approximation approach have successfully reconstructed surface of all five data with better performance based on three performance measurements used in the evaluation

    An Evaluation of a Metaheuristic Artificial Immune System for Household Energy Optimization

    Get PDF
    [EN] Devices in a smart home should be connected in an optimal way; this helps save energy and money. Among numerous optimization models that can be found in the literature, we would like to highlight artificial immune systems, which use special bioinspired algorithms to solve optimization problems effectively. The aim of this work is to present the application of an artificial immune system in the context of different energy optimization problems. Likewise, a case study is performed in which an artificial immune system is incorporated in order to solve an energy management problem in a domestic environment. A thorough analysis of the different strategies is carried out to demonstrate the ability of an artificial immune system to find a successful optima which satisfies the problem constraints

    Gravitational Search Algorithm for NURBS Curve Fitting

    Get PDF
    By providing great flexibility non-uniform rational B-spline (NURBS) curves and surfaces are reason of preferability on areas like computer aided design, medical imaging and computer graphics. Knots, control points and weights provide this flexibility. Computation of these parameters makes the problem as a non-linear combinational optimization problem on a process of reverse engineering. The ability of solving these problems using meta-heuristics instead of conventional methods attracts researchers. In this paper, NURBS curve estimation is carried out by a novel optimization method namely gravitational search algorithm. Both knots and knots together weights simultaneous optimization process is implemented by using research agents. The high performance of the proposed method on NURBS curve fitting is showed by obtained results.Keywords: Non-uniform rational B-spline, gravitational search algorithm, meta-heuristi

    Development and application of an optimisation architecture with adaptive swarm algorithm for airfoil aerodynamic design

    Get PDF
    The research focuses on the aerodynamic design of airfoils for a Multi-Mission Unmanned Aerial Vehicle (MM-UAV). Novel shape design processes using evolutionary algorithms (EA) and a surrogate-based management system are developed to address the identified issues and challenges of solution feasibility and computational efficiency associated with present methods. Feasibility refers to the optimality of the converged solution as a function of the defined objectives and constraints. Computational efficiency is a measure of the number of design iterations needed to achieve convergence to the theoretical optimum. Airfoil design problems are characterised by a multi-modal solution topology. Present gradient-based optimisation methods do not converge to an optimal profile, hence solution feasibility is compromised. Population-based optimisation methods including the Genetic Algorithm (GA) have been used in the literature to address this issue. The GA can achieve solution feasibility, yet it is computationally time-intensive, hence efficiency is compromised. Novel EAs are developed to address the identified shortcomings of present methods. A variant to the original Particle Swarm Optimisation algorithm (PSO) is presented. Novel mutation operators are implemented which facilitate the transition of the search particles toward a global solution. The methodology addresses the limited search performance of the original PSO algorithm for multi-modal problems, while maintaining acceptable computational efficiency for aerodynamic design applications. Demonstration of the developed principles confirmed the merits of the proposed design approach. Airfoil optimisation for a low-speed flight profile achieved drag performance improvement that is lower than a off-the-shelf shape designed for the intent role. Acceptable computational efficiency is achieved by restricting the optimisation phase to promising solution regions through the development of a novel, design variable search space mapping structure. The merit of the optimisation framework is further confirmed by transonic airfoil design for high-speed missions. The wave drag of the established optima is lower than the identified, off-the-shelf benchmark. Concurrently significant computational time-savings are achieved relative to the design methodologies present in the literature. A novel surrogate-assisted optimisation framework by the definition of an Artificial Neural Network with a pattern recognition model is developed to further improve the computational efficiency. This has the potential of enhancing the aerodynamic shape design process. The measure of computational efficiency is critical in the development of an optimisation algorithm. Airfoil design simulations presented required 80\% fewer design iterations to achieve convergence than the GA. Computational time-savings spanning days was achieved by the innovative algorithms developed relative to the GA. Hence, computational efficiency of the developed processes is confirmed. Aircraft shape design simulations involve three-dimensional configurations which require excessive computational effort due to the use of high-fidelity solvers for flow analysis in the optimisation process. It is anticipated that the confirmed computational efficiency performance of the design structure presented on two-dimensional cases will be transferable to three-dimensional shape design problems. It is further expected that the novel principles will be applicable for analysis within a multidisciplinary design structure for the development of a MM-UAV

    Damage detection for a large-scale truss bridge using Tranmissibility and ANNAOA

    Get PDF
    In this paper, we propose an efficient approach to enhance the capacity of Artificial Neural Network (ANN) to deal with Structural Health Monitoring (SHM) problems.  Over the last decades, ANN has been extensively utilized for damage detection in structures. In order to identify damages, ANN frequently utilizes input information that is based on dynamic features such as mode shapes or natural frequencies. However, this type of data may not be able to detect minor damages if the structural defects are insignificant. To transcend these limitations, in this work, we propose utilizing transmissibility to create input data for the input layer of ANN. Moreover, to deal with local minimum problems of ANN, a combination between the Arithmetic Optimization Algorithm (AOA) and ANN is proposed. The global search capacity of AOA is employed to remedy the local minima of ANN. To evaluate the effectiveness of the proposed approach, a numerical model with different damage scenarios is considered. The suggested approach detects damage location precisely and with higher severity detection precision than the conventional ANN method

    Damage detection for a large-scale truss bridge using Tranmissibility and ANNAOA

    Get PDF
    In this paper, we propose an efficient approach to enhance the capacity of Artificial Neural Network (ANN) to deal with Structural Health Monitoring (SHM) problems.  Over the last decades, ANN has been extensively utilized for damage detection in structures. In order to identify damages, ANN frequently utilizes input information that is based on dynamic features such as mode shapes or natural frequencies. However, this type of data may not be able to detect minor damages if the structural defects are insignificant. To transcend these limitations, in this work, we propose utilizing transmissibility to create input data for the input layer of ANN. Moreover, to deal with local minimum problems of ANN, a combination between the Arithmetic Optimization Algorithm (AOA) and ANN is proposed. The global search capacity of AOA is employed to remedy the local minima of ANN. To evaluate the effectiveness of the proposed approach, a numerical model with different damage scenarios is considered. The suggested approach detects damage location precisely and with higher severity detection precision than the conventional ANN method

    A Novel Adaptive LBP-Based Descriptor for Color Image Retrieval

    Get PDF
    In this paper, we present two approaches to extract discriminative features for color image retrieval. The proposed local texture descriptors, based on Radial Mean Local Binary Pattern (RMLBP), are called Color RMCLBP (CRMCLBP) and Prototype Data Model (PDM). RMLBP is a robust to noise descriptor which has been proposed to extract texture features of gray scale images for texture classification. For the first descriptor, the Radial Mean Completed Local Binary Pattern is applied to channels of the color space, independently. Then, the final descriptor is achieved by concatenating the histogram of the CRMCLBP_S/M/C component of each channel. Moreover, to enhance the performance of the proposed method, the Particle Swarm Optimization (PSO) algorithm is used for feature weighting. The second proposed descriptor, PDM, uses the three outputs of CRMCLBP (CRMCLBP_S, CRMCLBP_M, CRMCLBP_C) as discriminative features for each pixel of a color image. Then, a set of representative feature vectors are selected from each image by applying k-means clustering algorithm. This set of selected prototypes are compared by means of a new similarity measure to find the most relevant images. Finally, the weighted versions of PDM is constructed using PSO algorithm. Our proposed methods are tested on Wang, Corel-5k, Corel-10k and Holidays datasets. The results show that our proposed methods makes an admissible tradeoff between speed and retrieval accuracy. The first descriptor enhances the state-of-the-art color texture descriptors in both aspects. The second one is a very fast retrieval algorithm which extracts discriminative features
    corecore