226 research outputs found

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM

    Conceptual Design Evaluation of Mechatronic Systems

    Get PDF
    The definition of the conceptual design phase has been expressed in many different phrasings, but all of them lead to the same conclusion. The conceptual design phase is of the highest importance during the design process, due to the fact that many crucial decisions concerning the progress of the design need to be taken with very little to none information and knowledge about the design object. This implies to very high uncertainty about the effects that these decisions will have later on. During the conceptual design of a mechatronic system, the system to be designed is modeled, and several solutions (alternatives) to the design problem are generated and evaluated so that the most fitting one to the design specifications and requirements is chosen. The purpose of this chapter is to mention some of the most widely used methods of system modeling, mainly through hierarchical representations of their subsystems, and also to present a method for the generation and evaluation of the design alternatives

    Using the PROMETHEE multi-criteria decision making method to define new exploration strategies for rescue robots

    Get PDF
    International audienceThe exploration of an unknown environment by a robot system (an individual robot or a team of robots) is a well-studied problem in robotics. This problem has many applications and, among them, the post-disaster search of victims in an urban space. Most of proposed exploration algorithms are based on the use of specific criteria to define the quality of the possible movements. In this paper, we propose an exploration approach based on the combination of several criteria thanks to the PROMETHEE II multi-criteria decision making method. The PROMETHEE II method allows one to establish a complete ranking between possible movements based on outranking relations. Experimental results show that this approach can be used to effectively combine different criteria and outperforms several classic exploration strategies

    A Fuzzy-based Framework to Support Multicriteria Design of Mechatronic Systems

    Get PDF
    Designing a mechatronic system is a complex task since it deals with a high number of system components with multi-disciplinary nature in the presence of interacting design objectives. Currently, the sequential design is widely used by designers in industries that deal with different domains and their corresponding design objectives separately leading to a functional but not necessarily an optimal result. Consequently, the need for a systematic and multi-objective design methodology arises. A new conceptual design approach based on a multi-criteria profile for mechatronic systems has been previously presented by the authors which uses a series of nonlinear fuzzy-based aggregation functions to facilitate decision-making for design evaluation in the presence of interacting criteria. Choquet fuzzy integrals are one of the most expressive and reliable preference models used in decision theory for multicriteria decision making. They perform a weighted aggregation by the means of fuzzy measures assigning a weight to any coalition of criteria. This enables the designers to model importance and also interactions among criteria thus covering an important range of possible decision outcomes. However, specification of the fuzzy measures involves many parameters and is very difficult when only relying on the designer's intuition. In this paper, we discuss three different methods of fuzzy measure identification tailored for a mechatronic design process and exemplified by a case study of designing a vision-guided quadrotor drone. The results obtained from each method are discussed in the end

    A motor imagery based brain-computer interface system via swarm-optimized fuzzy integral and its application

    Full text link
    © 2016 IEEE. A brain-computer interface (BCI) system provides a convenient means of communication between the human brain and a computer, which is applied not only to healthy people but also for people that suffer from motor neuron diseases (MNDs). Motor imagery (MI) is one well-known basis for designing Electroencephalography (EEG)-based real-life BCI systems. However, EEG signals are often contaminated with severe noise and various uncertainties, imprecise and incomplete information streams. Therefore, this study proposes spectrum ensemble based on swam-optimized fuzzy integral for integrating decisions from sub-band classifiers that are established by a sub-band common spatial pattern (SBCSP) method. Firstly, the SBCSP effectively extracts features from EEG signals, and thereby the multiple linear discriminant analysis (MLDA) is employed during a MI classification task. Subsequently, particle swarm optimization (PSO) is used to regulate the subject-specific parameters for assigning optimal confidence levels for classifiers used in the fuzzy integral during the fuzzy fusion stage of the proposed system. Moreover, BCI systems usually tend to have complex architectures, be bulky in size, and require time-consuming processing. To overcome this drawback, a wireless and wearable EEG measurement system is investigated in this study. Finally, in our experimental result, the proposed system is found to produce significant improvement in terms of the receiver operating characteristic (ROC) curve. Furthermore, we demonstrate that a robotic arm can be reliably controlled using the proposed BCI system. This paper presents novel insights regarding the possibility of using the proposed MI-based BCI system in real-life applications

    Concurrent, Integrated and Multicriteria Design Support for Mechatronic Systems

    Get PDF
    RÉSUMÉ Les systèmes mécatroniques sont une combinaison coopérative de composantes mécaniques, électroniques, de contrôle et logiciels. Dans les dernières décennies, Ils ont trouvé diverses applications dans l'industrie et la vie quotidienne. En raison de leur aspect multi-physique, du nombre élevé de leurs composantes et des interconnexions dynamiques entre les différents domaines impliqués dans leur fonctionnement, les dispositifs mécatroniques sont souvent considérés comme hautement complexes ce qui rend la tâche de les concevoir très difficile pour les ingénieurs. Cette complexité inhérente a attiré l’attention de la communauté de recherche en conception, en particulier dans le but d’atteindre une conception optimale des systèmes multi-domaines. Ainsi, cette thèse, représente une recherche originale sur le développement d'un paradigme de conception systématique, intégrée et multi-objectifs pour remplacer l'approche de conception séquentielle traditionnelle qui tend à traiter les différents domaines de la mécatronique séparément. Dans le but d'augmenter l'efficacité, la fiabilité, la facilité de contrôle et sa flexibilité, tout en réduisant la complexité et le coût effectif, ainsi que l'intégration systèmes, cette thèse présente de nouvelles approches pour la conception concurrente et optimale des systèmes mécatroniques aux stades de design conceptuel et détaillé. Les modèles mathématiques et les fondements qui soutiennent cette pensée sont présentés dans cette thèse. Les contributions des travaux de recherche de ce doctorat ont commencé par l'introduction d'un vecteur d'indices appelé le profile mécatronique multicritère (PMM) utilisé pour l'évaluation des concepts lors de la conception des systèmes mécatroniques. Les intégrales floues non linéaires de la théorie de décisions multicritères sont utilisées pour agréger les critères de conception et pour gérer les interactions possibles entre elles. Ensuite, une méthodologie de conception conceptuelle systématique est proposée et formulée. Le soutien à l'intégration d'outils d’aide à la décision multicritère dans le processus de conception est un autre objectif de cette thèse où un certain nombre de cadres de travail sont proposés pour aider les ingénieurs concepteurs à évaluer l’importance de certains critères et des paramètres d'interaction. Ces cadres de travail ne s'appliquent pas uniquement l'évaluation de la conception et de la conception optimales, mais aussi à la détermination des possibles façons d'améliorer les concepts développés. Des méthodes basées sur l’exploitation de données ainsi que des algorithmes d'optimisation sémantique sont utilisées pour identifier les paramètres flous avec le peu d’information disponibles sur les différents choix de concepts et les préférences des concepteurs.----------ABSTRACT Mechatronic systems are a combination of cooperative mechanical, electronics, control and software components. They have found vast applications in industry and everyday life during past decades. Due to their multi-physical aspect, the high number of their components, and the dynamic inter-connections between the different domains involved, mechatronic devices are often considered to be highly complex which makes the design task very tedious and non-trivial. This inherent complexity, has attracted a great deal of attention in the research community, particularly in the context of optimal design of multi-domain systems. To this end, the present thesis represents an original investigation into the development of a systematic, integrated and multi-objective design paradigm to replace the traditional sequential design approach that tends to deal with the different domains separately. With the aim of increasing efficiency, reliability, controllability and flexibility, while reducing complexity and effective cost, and finally facilitating system integration, this thesis presents new approaches towards concurrent and optimal design of mechatronic systems in conceptual and detailed design stages. The mathematical models and foundations which support this thinking are presented in the thesis. The contributions of our research work start with introducing an index vector called Mechatronic Multi-criteria Profile (MMP) used for concept evaluation in design of mechatronic systems. Nonlinear fuzzy integrals from multicriteria decision theory are utilized to aggregate design criteria and for handling possible interactions among them. Then, a systematic conceptual design methodology is proposed and formulated. Supporting the incorporation of multicriteria decision making tools into the design process, is another focus of this work where a number of frameworks are proposed to help the designers with assessment of criteria importance and interaction parameters. These frameworks are not only applicable in optimal design and design evaluation procedures, but also for determining possible ways for design improvements. Both data-driven methods as well as semantic-based optimization algorithms are used to identify the fuzzy parameters with limited available information about the design alternatives and designer preferences. Moreover, a fuzzy-based multi-objective approach has been undertaken for proposing and formulating a detailed design methodology. A unified performance evaluation index is introduced by the means of Choquet integrals and then optimized using a constrained particle swarm optimization (PSO) algorithm

    INVESTIGATION OF INDUSTRY 5.0 HURDLES AND THEIR MITIGATION TACTICS IN EMERGING ECONOMIES BY TODIM ARITHMETIC AND GEOMETRIC AGGREGATION OPERATORS IN SINGLE VALUE NEUTROSOPHIC ENVIRONMENT

    Get PDF
    Industry 5.0 acceptance is accelerating, but research is still in its infancy, and existing research covers a small subset of context-specific obstacles. This study aims to enumerate all potential obstacles, quantitatively rank them, and assess interdependencies at the organizational level for Industry 5.0 adoption. To achieve this, we thoroughly review the literature, identify obstacles, and investigate causal relationships using a multi-criteria decision-making approach called single value Neutrosophic TODIM. Single-valued Neutrosophic sets (SVNS) ensembles are employed in a real-world setting to deal with uncertainty and indeterminacy. The suggested strategy enables the experts to conduct group decision-making by focusing on ranking the smaller collection of criterion values and the comparison with the decision-making trial and evaluation laboratory method (DEMATEL). According to the findings, the most significant hurdles are expenses and the funding system, capacity scalability, upskilling, and reskilling of human labor. As a result, a comfortable atmosphere is produced for decision-making, enabling the experts to handle an acceptable amount of data while still making choices
    corecore