12,425 research outputs found

    EMMIXcskew: an R Package for the Fitting of a Mixture of Canonical Fundamental Skew t-Distributions

    Get PDF
    This paper presents an R package EMMIXcskew for the fitting of the canonical fundamental skew t-distribution (CFUST) and finite mixtures of this distribution (FM-CFUST) via maximum likelihood (ML). The CFUST distribution provides a flexible family of models to handle non-normal data, with parameters for capturing skewness and heavy-tails in the data. It formally encompasses the normal, t, and skew-normal distributions as special and/or limiting cases. A few other versions of the skew t-distributions are also nested within the CFUST distribution. In this paper, an Expectation-Maximization (EM) algorithm is described for computing the ML estimates of the parameters of the FM-CFUST model, and different strategies for initializing the algorithm are discussed and illustrated. The methodology is implemented in the EMMIXcskew package, and examples are presented using two real datasets. The EMMIXcskew package contains functions to fit the FM-CFUST model, including procedures for generating different initial values. Additional features include random sample generation and contour visualization in 2D and 3D

    Robust EM algorithm for model-based curve clustering

    Full text link
    Model-based clustering approaches concern the paradigm of exploratory data analysis relying on the finite mixture model to automatically find a latent structure governing observed data. They are one of the most popular and successful approaches in cluster analysis. The mixture density estimation is generally performed by maximizing the observed-data log-likelihood by using the expectation-maximization (EM) algorithm. However, it is well-known that the EM algorithm initialization is crucial. In addition, the standard EM algorithm requires the number of clusters to be known a priori. Some solutions have been provided in [31, 12] for model-based clustering with Gaussian mixture models for multivariate data. In this paper we focus on model-based curve clustering approaches, when the data are curves rather than vectorial data, based on regression mixtures. We propose a new robust EM algorithm for clustering curves. We extend the model-based clustering approach presented in [31] for Gaussian mixture models, to the case of curve clustering by regression mixtures, including polynomial regression mixtures as well as spline or B-spline regressions mixtures. Our approach both handles the problem of initialization and the one of choosing the optimal number of clusters as the EM learning proceeds, rather than in a two-fold scheme. This is achieved by optimizing a penalized log-likelihood criterion. A simulation study confirms the potential benefit of the proposed algorithm in terms of robustness regarding initialization and funding the actual number of clusters.Comment: In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), 2013, Dallas, TX, US

    EMMIX-uskew: An R Package for Fitting Mixtures of Multivariate Skew t-distributions via the EM Algorithm

    Get PDF
    This paper describes an algorithm for fitting finite mixtures of unrestricted Multivariate Skew t (FM-uMST) distributions. The package EMMIX-uskew implements a closed-form expectation-maximization (EM) algorithm for computing the maximum likelihood (ML) estimates of the parameters for the (unrestricted) FM-MST model in R. EMMIX-uskew also supports visualization of fitted contours in two and three dimensions, and random sample generation from a specified FM-uMST distribution. Finite mixtures of skew t-distributions have proven to be useful in modelling heterogeneous data with asymmetric and heavy tail behaviour, for example, datasets from flow cytometry. In recent years, various versions of mixtures with multivariate skew t (MST) distributions have been proposed. However, these models adopted some restricted characterizations of the component MST distributions so that the E-step of the EM algorithm can be evaluated in closed form. This paper focuses on mixtures with unrestricted MST components, and describes an iterative algorithm for the computation of the ML estimates of its model parameters. The usefulness of the proposed algorithm is demonstrated in three applications to real data sets. The first example illustrates the use of the main function fmmst in the package by fitting a MST distribution to a bivariate unimodal flow cytometric sample. The second example fits a mixture of MST distributions to the Australian Institute of Sport (AIS) data, and demonstrate that EMMIX-uskew can provide better clustering results than mixtures with restricted MST components. In the third example, EMMIX-uskew is applied to classify cells in a trivariate flow cytometric dataset. Comparisons with other available methods suggests that the EMMIX-uskew result achieved a lower misclassification rate with respect to the labels given by benchmark gating analysis

    Flexible Mixture Modeling with the Polynomial Gaussian Cluster-Weighted Model

    Full text link
    In the mixture modeling frame, this paper presents the polynomial Gaussian cluster-weighted model (CWM). It extends the linear Gaussian CWM, for bivariate data, in a twofold way. Firstly, it allows for possible nonlinear dependencies in the mixture components by considering a polynomial regression. Secondly, it is not restricted to be used for model-based clustering only being contextualized in the most general model-based classification framework. Maximum likelihood parameter estimates are derived using the EM algorithm and model selection is carried out using the Bayesian information criterion (BIC) and the integrated completed likelihood (ICL). The paper also investigates the conditions under which the posterior probabilities of component-membership from a polynomial Gaussian CWM coincide with those of other well-established mixture-models which are related to it. With respect to these models, the polynomial Gaussian CWM has shown to give excellent clustering and classification results when applied to the artificial and real data considered in the paper

    Comparison of Mixture and Classification Maximum Likelihood Approaches in Poisson Regression Models

    Get PDF
    In this work, we propose to compare two algorithms to compute maximum likelihood estimators of the parameters of a mixture Poisson regression models. To estimate these parameters, we may use the EM algorithm in a mixture approach or the CEM algorithm in a classification approach. The comparison of the two procedures was done through a simulation study of the performance of these approaches on simulated data sets in a target number of iterations. Simulation results show that the CEM algorithm is a good alternative to the EM algorithm for fitting Poisson mixture regression models, having the advantage of converging more quickly
    corecore