145 research outputs found

    Choosing a variable ordering for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition

    Get PDF
    Cylindrical algebraic decomposition (CAD) is a key tool for solving problems in real algebraic geometry and beyond. In recent years a new approach has been developed, where regular chains technology is used to first build a decomposition in complex space. We consider the latest variant of this which builds the complex decomposition incrementally by polynomial and produces CADs on whose cells a sequence of formulae are truth-invariant. Like all CAD algorithms the user must provide a variable ordering which can have a profound impact on the tractability of a problem. We evaluate existing heuristics to help with the choice for this algorithm, suggest improvements and then derive a new heuristic more closely aligned with the mechanics of the new algorithm

    Formulating problems for real algebraic geometry

    Get PDF
    We discuss issues of problem formulation for algorithms in real algebraic geometry, focussing on quantifier elimination by cylindrical algebraic decomposition. We recall how the variable ordering used can have a profound effect on both performance and output and summarise what may be done to assist with this choice. We then survey other questions of problem formulation and algorithm optimisation that have become pertinent following advances in CAD theory, including both work that is already published and work that is currently underway. With implementations now in reach of real world applications and new theory meaning algorithms are far more sensitive to the input, our thesis is that intelligently formulating problems for algorithms, and indeed choosing the correct algorithm variant for a problem, is key to improving the practical use of both quantifier elimination and symbolic real algebraic geometry in general.Comment: To be presented at The "Encuentros de \'Algebra Computacional y Aplicaciones, EACA 2014" (Meetings on Computer Algebra and Applications) in Barcelon

    Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains

    Get PDF
    A new algorithm to compute cylindrical algebraic decompositions (CADs) is presented, building on two recent advances. Firstly, the output is truth table invariant (a TTICAD) meaning given formulae have constant truth value on each cell of the decomposition. Secondly, the computation uses regular chains theory to first build a cylindrical decomposition of complex space (CCD) incrementally by polynomial. Significant modification of the regular chains technology was used to achieve the more sophisticated invariance criteria. Experimental results on an implementation in the RegularChains Library for Maple verify that combining these advances gives an algorithm superior to its individual components and competitive with the state of the art

    Need Polynomial Systems Be Doubly-Exponential?

    Get PDF
    Polynomial Systems, or at least their algorithms, have the reputation of being doubly-exponential in the number of variables [Mayr and Mayer, 1982], [Davenport and Heintz, 1988]. Nevertheless, the Bezout bound tells us that that number of zeros of a zero-dimensional system is singly-exponential in the number of variables. How should this contradiction be reconciled? We first note that [Mayr and Ritscher, 2013] shows that the doubly exponential nature of Gr\"{o}bner bases is with respect to the dimension of the ideal, not the number of variables. This inspires us to consider what can be done for Cylindrical Algebraic Decomposition which produces a doubly-exponential number of polynomials of doubly-exponential degree. We review work from ISSAC 2015 which showed the number of polynomials could be restricted to doubly-exponential in the (complex) dimension using McCallum's theory of reduced projection in the presence of equational constraints. We then discuss preliminary results showing the same for the degree of those polynomials. The results are under primitivity assumptions whose importance we illustrate.Comment: Extended Abstract for ICMS 2016 Presentation. arXiv admin note: text overlap with arXiv:1605.0249

    Truth table invariant cylindrical algebraic decomposition

    Get PDF
    When using cylindrical algebraic decomposition (CAD) to solve a problem with respect to a set of polynomials, it is likely not the signs of those polynomials that are of paramount importance but rather the truth values of certain quantifier free formulae involving them. This observation motivates our article and definition of a Truth Table Invariant CAD (TTICAD). In ISSAC 2013 the current authors presented an algorithm that can efficiently and directly construct a TTICAD for a list of formulae in which each has an equational constraint. This was achieved by generalising McCallum's theory of reduced projection operators. In this paper we present an extended version of our theory which can be applied to an arbitrary list of formulae, achieving savings if at least one has an equational constraint. We also explain how the theory of reduced projection operators can allow for further improvements to the lifting phase of CAD algorithms, even in the context of a single equational constraint. The algorithm is implemented fully in Maple and we present both promising results from experimentation and a complexity analysis showing the benefits of our contributions.Comment: 40 page

    Problem formulation for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition

    Get PDF
    Cylindrical algebraic decompositions (CADs) are a key tool for solving problems in real algebraic geometry and beyond. We recently presented a new CAD algorithm combining two advances: truth-table invariance, making the CAD invariant with respect to the truth of logical formulae rather than the signs of polynomials; and CAD construction by regular chains technology, where first a complex decomposition is constructed by refining a tree incrementally by constraint. We here consider how best to formulate problems for input to this algorithm. We focus on a choice (not relevant for other CAD algorithms) about the order in which constraints are presented. We develop new heuristics to help make this choice and thus allow the best use of the algorithm in practice. We also consider other choices of problem formulation for CAD, as discussed in CICM 2013, revisiting these in the context of the new algorithm

    Cylindrical algebraic decomposition with equational constraints

    Get PDF
    Cylindrical Algebraic Decomposition (CAD) has long been one of the most important algorithms within Symbolic Computation, as a tool to perform quantifier elimination in first order logic over the reals. More recently it is finding prominence in the Satisfiability Checking community as a tool to identify satisfying solutions of problems in nonlinear real arithmetic. The original algorithm produces decompositions according to the signs of polynomials, when what is usually required is a decomposition according to the truth of a formula containing those polynomials. One approach to achieve that coarser (but hopefully cheaper) decomposition is to reduce the polynomials identified in the CAD to reflect a logical structure which reduces the solution space dimension: the presence of Equational Constraints (ECs). This paper may act as a tutorial for the use of CAD with ECs: we describe all necessary background and the current state of the art. In particular, we present recent work on how McCallum's theory of reduced projection may be leveraged to make further savings in the lifting phase: both to the polynomials we lift with and the cells lifted over. We give a new complexity analysis to demonstrate that the double exponent in the worst case complexity bound for CAD reduces in line with the number of ECs. We show that the reduction can apply to both the number of polynomials produced and their degree.Comment: Accepted into the Journal of Symbolic Computation. arXiv admin note: text overlap with arXiv:1501.0446
    • …
    corecore