158 research outputs found

    Designing multimodal interaction for the visually impaired

    Get PDF
    Although multimodal computer input is believed to have advantages over unimodal input, little has been done to understand how to design a multimodal input mechanism to facilitate visually impaired users\u27 information access. This research investigates sighted and visually impaired users\u27 multimodal interaction choices when given an interaction grammar that supports speech and touch input modalities. It investigates whether task type, working memory load, or prevalence of errors in a given modality impact a user\u27s choice. Theories in human memory and attention are used to explain the users\u27 speech and touch input coordination. Among the abundant findings from this research, the following are the most important in guiding system design: (1) Multimodal input is likely to be used when it is available. (2) Users select input modalities based on the type of task undertaken. Users prefer touch input for navigation operations, but speech input for non-navigation operations. (3) When errors occur, users prefer to stay in the failing modality, instead of switching to another modality for error correction. (4) Despite the common multimodal usage patterns, there is still a high degree of individual differences in modality choices. Additional findings include: (I) Modality switching becomes more prevalent when lower working memory and attentional resources are required for the performance of other concurrent tasks. (2) Higher error rates increases modality switching but only under duress. (3) Training order affects modality usage. Teaching a modality first versus second increases the use of this modality in users\u27 task performance. In addition to discovering multimodal interaction patterns above, this research contributes to the field of human computer interaction design by: (1) presenting a design of an eyes-free multimodal information browser, (2) presenting a Wizard of Oz method for working with visually impaired users in order to observe their multimodal interaction. The overall contribution of this work is that of one of the early investigations into how speech and touch might be combined into a non-visual multimodal system that can effectively be used for eyes-free tasks

    Human Factors in Automated and Robotic Space Systems: Proceedings of a symposium. Part 1

    Get PDF
    Human factors research likely to produce results applicable to the development of a NASA space station is discussed. The particular sessions covered in Part 1 include: (1) system productivity -- people and machines; (2) expert systems and their use; (3) language and displays for human-computer communication; and (4) computer aided monitoring and decision making. Papers from each subject area are reproduced and the discussions from each area are summarized

    Human Factors Considerations in System Design

    Get PDF
    Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments

    Towards an Expert System for the Analysis of Computer Aided Human Performance

    Get PDF

    An integrated task manager for virtual command and control

    Get PDF
    The Task Manager is a desktop/tablet PC interface to the Battlespace research project that provides interactions and displays for supervisory control of unmanned aerial vehicles. Utilizing a north-up map display, the Task Manager provides a direct-manipulation interface to the units involved in an engagement. Used in two primary modes, the Task Manager can be used either in a planning/review mode that can be used to generate mission scenarios or a live-streaming mode that connects to a live Battlespace simulation via a network connection to edit and update path information on the fly. The goal of this research is to combine the precision of 2D mouse and pen-based interaction with the increased situational awareness provided by 3D battlefield visualizations like the Battlespace application. Combined use of these interfaces, either by a single operator or a small team of operators with task-specific roles, is proposed to produce a more favorable ratio of operators to units in field operations with superior decision-making capabilities due to the specific nature of the interfaces

    Study to determine potential flight applications and human factors design guidelines for voice recognition and synthesis systems

    Get PDF
    A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept

    Human factors aspects of control room design: Guidelines and annotated bibliography

    Get PDF
    A human factors analysis of the workstation design for the Earth Radiation Budget Satellite mission operation room is discussed. The relevance of anthropometry, design rules, environmental design goals, and the social-psychological environment are discussed

    'ํƒ‘์Šน์ž'์˜ ๊ด€์ ์˜ ์‹œ๊ฐ„, ์œ„์น˜ ๊ธฐ๋ฐ˜ ์ฐจ๋Ÿ‰ ํด๋Ÿฌ์Šคํ„ฐ UI ๋””์ž์ธ ํ”„๋ ˆ์ž„ ์ œ์•ˆ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋ฏธ์ˆ ๋Œ€ํ•™ ๋””์ž์ธํ•™๋ถ€ ๋””์ž์ธ์ „๊ณต,2019. 8. ์ •์˜์ฒ .One important design issue is the examination of how the user interface (UI) supports the new user role in future mobility. However, there are few design studies on the passengers cognitive needs and behavior in Autonomous Vehicles (AVs) based on empirical data. There is no doubt that autonomous mobility technologies are growing. The technology is already aiding the driving experience, and it will change the mobility culture and the transition of driver into passenger. This study is based on the premise that future AV is capable of performing all driving tasks. It proposes a set of passenger-centered automotive cluster UI designs for future mobility employing two factors: time and path. A set of empirical data is provided to understand the passengers perspective. In this study, a solid set of empirical data on the cognitive needs of passengers is collected. Human cognitive characteristics and driving tasks are investigated from various viewpoints to understand the passengers iii perspective. The cognitive relationship in the driving environment is analyzed through a literature review on situation awareness (SA) and structuring of the data flow framework. The framework is further explored by connecting the technological role transformation to the passenger. To construct the empirical database on the passenger, three sets of user tests and in-depth interviews were undertaken. The user tests were designed employing the Wizard of Oz method, and the results were summarized using descriptive and exploratory analysis. Based on these insights, a set of UI designs from the perspective of the passenger was proposed, and usability tests were conducted to verify its effectiveness and usability. The results of the tests demonstrate that a major percentage of the information request was related to time (current time and duration) and path (vehicle location and surroundings). Based on the data, a UI framework was built. Two usage scenarios were designed, time-full and time-less, for better in-situation comprehension. Time- and path-based UI were proposed to flow with the scenarios. A usability test was conducted, and a passengers cognitive framework was defined. There are two aspects to this study: the data flow frameworks of the driver/passenger, and the UI design proposal. Situational precision from the perspective of the driver was analyzed to understand the relationship between the user, the vehicle and the road conditions. Further, the cognitive framework of the passenger was proposed based on the data. This study provides a solid understanding of drivers emerging needs when they are relieved of the cognitive burden of driving tasks. The UI features for AV are introduced based on the empirical data and research related to the provision of better situation awareness, focusing on time and location. This study contributes to the extant literature by observing the iv perspective of passengers in Autonomous vehicles based on a qualitative study. The proposed UI design will be further explored as a communication method between the system and the passive user in future mobility.์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค๊ฐ€ (UI) ๋ฏธ๋ž˜ ์ด๋™์„ฑ์—์„œ ์ƒˆ๋กœ์šด ์‚ฌ์šฉ์ž ์—ญํ• ์„ ์ง€์ง€ํ•˜๋Š” ๋””์ž์ธ ๋„์ถœ์€ ๋ฏธ๋ž˜ ์ด๋™์„ฑ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋””์ž์ธ ์ด์Šˆ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฌ์šฉ์ž ์‹คํ—˜์— ๊ทผ๊ฑฐํ•˜์—ฌ ์ž์œจ์ฃผํ–‰์ฐจ๋Ÿ‰ (AV) ์˜ ํƒ‘์Šน์ž์ธ์ง€ ์š•๊ตฌ์™€ ํ–‰๋™์— ๋Œ€ํ•œ ๋””์ž์ธ ์—ฐ๊ตฌ๋Š” ๋ฏธ๋ฏธํ•˜๋‹ค. ์ž์œจ์ฃผํ–‰์ด ๊ธฐ์ˆ ์˜ ๋ฐœ์ „๊ณผ ๊ทธ ์˜์—ญ์€ ์ ์ฐจ ๋„“์–ด์ง€๊ณ  ์žˆ๋‹ค. ํ•ด๋‹น ๊ธฐ์ˆ ์€ ์ด๋ฏธ ์šด์ „ ํ™˜๊ฒฝ์— ์ ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด ๋ฏธ๋ž˜ ์ด๋™๋ฌธํ™”์—์„œ ์‚ฌ์šฉ์ž์˜ ์—ญํ• ์€ '์šด์ „์ž'์—์„œ 'ํƒ‘์Šน์ž'๋กœ ๋ณ€ํ™”ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฏธ๋ž˜ ์ž์œจ์ฃผํ–‰์ฐจ๋Ÿ‰์ด ๋ชจ๋“  ์šด์ „ ์ƒํ™ฉ์— ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์ „์ œ๋กœ ํ•œ๋‹ค. ์‚ฌ์šฉ์ž ์‹คํ—˜์„ ํ†ตํ•ด ํƒ‘์Šน์ž์˜ ๊ด€์ ์— ๋Œ€ํ•œ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฏธ๋ž˜ ๋ชจ๋นŒ๋ฆฌํ‹ฐ ํ™˜๊ฒฝ์— ์ ์šฉ๋  ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋””์ž์ธ์€ ์šด์ „์ž ์ค‘์‹ฌ์˜ ์ƒํ™ฉ์ธ์ง€์—์„œ ๋ฒ—์–ด๋‚˜ ํƒ‘์Šน์ž ์ค‘์‹ฌ ์ธ์ง€ ์ •๋ณด ์š”์†Œ๋ฅผ ๋ถ„์„ํ•˜์˜€๊ณ , ์‹œ๊ฐ„๊ณผ ๊ฒฝ๋กœ ๋‘ ๊ฐ€์ง€ ์š”์†Œ๋ฅผ ๊ฐ•์กฐํ•œ UI ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ํƒ‘์Šน์ž์˜ ์ธ์ง€ ์ •๋ณด ์š”๊ตฌ์— ๋Œ€ํ•œ ์‹คํ—˜์  ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ํƒ‘์Šน์ž์˜ ๊ด€์ ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๊ด€์ ์—์„œ ์ธ๊ฐ„์˜ ์ธ์ง€์  ํŠน์„ฑ ๋ฐ ์šด์ „ ํƒœ์Šคํฌ๋ฅผ ๊ด€์ฐฐํ•˜์˜€๊ณ , ์ƒํ™ฉ์ธ์ง€ (SA) ์— ๊ด€ํ•œ ๋ฌธํ—Œ ์—ฐ๊ตฌ์™€ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„์›Œํฌ ๊ตฌ์กฐํ™”๋ฅผ ํ†ตํ•ด ์šด์ „ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ธ์ง€์  ์š”์†Œ ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๊ธฐ์ˆ  ๋ณ€ํ™”์— ๋”ฐ๋ผ ์šด์ „์ž๊ฐ€ ํƒ‘์Šน์ž๋กœ ๋ณ€ํ™”๋˜์—ˆ์„ ๋•Œ ์šด์ „ ํ™˜๊ฒฝ์—์„œ์˜ ๋ฐ์ดํ„ฐ ๊ด€๊ณ„ ๋ณ€ํ™”๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ๊ตฌ์กฐํ™”ํ•˜์—ฌ ์‹ฌ์ธต์ ์œผ๋กœ ํƒ๊ตฌ๋˜์—ˆ๋‹ค. ํƒ‘์Šน์ž์˜ ์ธ์ง€ ๋‹ˆ์ฆˆ ๋Œ€ํ•œ ์‹คํ—˜์  ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ์ˆ˜์ง‘ํ•˜๊ธฐ ์œ„ํ•ด ์ด 3 ์„ธํŠธ์˜ ์œ ์ € ํ…Œ์ŠคํŠธ์™€ ์‹ฌ์ธต ์ธํ„ฐ๋ทฐ๊ฐ€ ์ˆ˜๋ฐ˜๋˜์—ˆ๋‹ค. ์œ ์ € ํ…Œ์ŠคํŠธ๋Š” Wizard of Oz ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์งˆ์  ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๋ก ์˜ ๋ถ„์„ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ถ„์„๋˜์—ˆ๋‹ค. ์‹คํ—˜์„ ํ†ตํ•ด ์–ป์€ ์ธ์‚ฌ์ดํŠธ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํƒ‘์Šน์ž ๊ด€์ ์—์„œ UI ๋””์ž์ธ์„ ์ œ์•ˆํ•˜๊ณ  ์‚ฌ์šฉ์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ํ†ตํ•ด ํšจ์œจ์„ฑ๊ณผ ์œ ์šฉ์„ฑ์„ 5 ์  ๋ฆฌ ์ปคํŠธ ์Šค์ผ€์ผ๋กœ์จ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด ํƒ‘์Šน์ž๊ฐ€ ์š”์ฒญํ•œ ์ธ์ง€ ์ •๋ณด๋Š” ์‹œ๊ฐ„ (ํ˜„์žฌ ์‹œ๊ฐ ๋ฐ ๊ธฐ๊ฐ„)๊ณผ ๊ฒฝ๋กœ (์ฐจ๋Ÿ‰ ์œ„์น˜ ๋ฐ ์ฃผ๋ณ€ ํ™˜๊ฒฝ)์— ์ง‘์ค‘๋œ ๊ฒƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ UI ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์ƒํ™ฉ ์†์˜ ์‚ฌ์šฉ๋ก€๋ฅผ ์ œ์‹œํ•˜๊ธฐ ์œ„ํ•˜์—ฌ๋„ ๊ฐ€์ง€ time-full ๊ณผ time-less ์˜ ์‚ฌ์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ , ์ œ์•ˆ๋œ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ผ ์‹œ๊ฐ„๊ณผ ์œ„์น˜์— ๊ธฐ๋ฐ˜ํ•œ UI ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ UI ์— ๋Œ€ํ•œ ์‚ฌ์šฉ์„ฑ ํ…Œ์ŠคํŠธ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๊ณ , ํƒ‘์Šน์ž ๊ด€์ ์—์„œ์˜ ์šด์ „์ƒํ™ฉ ์ธ์ง€ ์›Œํฌ ํ”„๋ ˆ์ž„์„ ์™„์„ฑํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฐ€์น˜๋Š” ๋‘ ๊ฐ€์ง€๋กœ ์ •๋ฆฌ๋  ์ˆ˜ ์žˆ๋‹ค. ํ•˜๋‚˜๋Š” ์šด์ „์ž / ํƒ‘์Šน์ž์˜ ๋ฐ์ดํ„ฐ ํ”Œ๋กœ์šฐ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค๋Š” ๊ฒƒ๊ณผ ๋‘ ๋ฒˆ์งธ๋Š” ํƒ‘์Šน์ž์˜ ๊ด€์ ์„ ์ง€์ง€ํ•˜๋Š” UI ๋””์ž์ธ ์ œ์•ˆ์— ์žˆ๋‹ค. ์šด์ „์ž์˜ ๊ด€์ ์—์„œ์˜ ์šด์ „ ์ƒํ™ฉ์„ ๋ถ„์„ํ•˜์—ฌ ์‚ฌ์šฉ์ž, ์ฐจ๋Ÿ‰, ๊ทธ๋ฆฌ๊ณ  ๋„๋กœ ์ƒํƒœ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์‹œ๊ฐํ™”ํ•˜์˜€๊ณ , ์ด๋Š” ํƒ‘์Šน์ž์ธ์ง€ ํ”Œ๋กœ์šฐ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜๋Š”๋ฐ ๊ธฐ์กฐ์ ์ธ ํ‹€๋กœ์จ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์šด์ „ ํƒœ์Šคํฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐ์— ํ•„์š”ํ–ˆ๋˜ ์ธ์ง€ ๋ถ€๋‹ด์—์„œ ๋ฒ—์–ด๋‚ฌ์„ ๋•Œ์˜ ์šด์ „์ž๊ฐ€ ํ•„์š”๋กœ ํ•˜๋Š” ๋ณตํ•ฉ์ ์ธ ๋‹ˆ์ฆˆ์— ๋Œ€ํ•ด ๊ด€์ฐฐํ•˜๊ณ  ๋ฏธ๋ž˜ ๋ชจ๋นŒ๋ฆฌํ‹ฐ ํ™˜๊ฒฝ์— ์ ํ•ฉํ•œ UI ์˜ ๋””์ž์ธ ์š”์†Œ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋…ผ๋ฌธ์ด๋‹ค. ๋ฏธ๋ž˜ ์ž์œจ์ฃผํ–‰์ฐจ๋Ÿ‰ ์•ˆ์˜ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค๊ฐ€ ๊ฐ–์ถ”์–ด์•ผ ํ•˜๋Š” ์š”์†Œ๋ฅผ ์‹คํ—˜์  ๋ฐ์ดํ„ฐ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์ œ์‹œํ•˜๋ฉฐ, ์‹œ๊ฐ„๊ณผ ๋ฃจํŠธ๋ฅผ ๊ฐ•์กฐํ•˜์—ฌ ํ–ฅ์ƒ๋œ ์ƒํ™ฉ ์ธ์ง€๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์‹ฌ๋„์žˆ๋Š” ๊ด€์ฐฐ์„ ๊ธฐ๋กํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์งˆ์  ์—ฐ๊ตฌ์— ๊ธฐ์ดˆํ•œ ์ž์œจ ์ฐจ๋Ÿ‰์˜ ํƒ‘์Šน์ž ๊ด€์ ์„ ๊ด€์ฐฐํ•จ์œผ๋กœ์จ ๊ธฐ์กด ์ž์œจ์ฃผํ–‰์ด ๋””์ž์ธ ์—ฐ๊ตฌ์— ๊ธฐ์—ฌํ•  ๊ฒƒ์ด๋‹ค. ์ œ์•ˆ๋œ UI ๋””์ž์ธ ๋ฏธ๋ž˜ ์ด๋™ ์„ฑ์•ˆ์—์„œ ์‹œ์Šคํ…œ๊ณผ ํƒ‘์Šน์ž ๊ฐ„์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋กœ์จ ๊ทธ ์˜์˜๊ฐ€ ์žˆ๋‹ค.ABSTRACT ...................................................................................................................... II CHAPTER 1. INTRODUCTION......................................................................................... ๏ผ‘ 1.1. BACKGROUND ..............................................................................................................๏ผ‘ 1.2. PURPOSE .....................................................................................................................๏ผ— 1.3. RESEARCH QUESTION.....................................................................................................๏ผ˜ CHAPTER 2. LITERATURE REVIEW ..............................................................................๏ผ‘๏ผ‘ 2.1. SITATION AWARENESS (SA) ........................................................................................๏ผ‘๏ผ‘ 2.2. HUMAN INFORMATION PROCESSING MODEL..................................................................๏ผ‘๏ผ• 2.3. DRIVING SITUATION AWARENESS AND PERSPECTIVE.........................................................๏ผ’๏ผ 2.4. DRIVING TASK AND SENSORY INTERACTION ....................................................................๏ผ’๏ผ’ CHAPTER 3. COGNITIVE NEEDS IN AUTONOMOUS.....................................................๏ผ’๏ผ— 3.1. DRIVING BEHAVIOR TRANSFORMATION AND CLUSTER UI..................................................๏ผ’๏ผ— 3.2. COGNITIVE FRAMEWORK TRANSFORMATION ..................................................................๏ผ“๏ผ“ CHAPTER 4. USER TESTS ............................................................................................๏ผ“๏ผ– 4.1. WIZARD OF OZ PROTOTYPING .....................................................................................๏ผ“๏ผ˜ 4.2. PILOT TEST 1............................................................................................................๏ผ”๏ผ 4.2.1. Experiment Design & Laboratory Setting.................................................๏ผ”๏ผ 4.2.2. Persona Scenario & Task Design ..............................................................๏ผ”๏ผ’ 4.2.3. Preparation of Driving situation...............................................................๏ผ”๏ผ• 4.2.4. Procedure.................................................................................................๏ผ”๏ผ— 4.2.5. Data Analysis & Insight............................................................................๏ผ”๏ผ˜ 4.3. PILOT TEST 2............................................................................................................๏ผ•๏ผ‘ 4.3.1. Amendment: Experiment Design & Laboratory Setting ...........................๏ผ•๏ผ’ 4.3.2. Amendment: Task Scenario & Command Cue..........................................๏ผ•๏ผ” 4.3.3. Amendment: Perform Role and preparation of driving situation ............๏ผ•๏ผ— 4.3.4. Amendment: Procedure ...........................................................................๏ผ•๏ผ™ 4.3.5. Data Analysis & Insight............................................................................๏ผ–๏ผ’ 4.4. MAIN TEST ..............................................................................................................๏ผ–๏ผ• 4.4.1. Experiment Design & Laboratory setting .................................................๏ผ–๏ผ– 4.4.2. Task Design ..............................................................................................๏ผ–๏ผ™ 4.4.3. Procedure.................................................................................................๏ผ—๏ผ‘ 4.4.4. Result Analysis & Insight..........................................................................๏ผ—๏ผ” CHAPTER 5. UI CONCEPT DEVELOPMENT...................................................................๏ผ˜๏ผ‘ 5.1. UI DESIGN METHOD..................................................................................................๏ผ˜๏ผ‘ 5.2. DESIGN PROPOSAL ....................................................................................................๏ผ˜๏ผ” 5.3. USER SCENARIOS ......................................................................................................๏ผ˜๏ผ– 5.3.1 Scenario 1. Time-less: Late for a morning meeting..................................๏ผ˜๏ผ– 5.3.2 Scenario 2.Time-full: Leisure driving on weekends ..................................๏ผ™๏ผ“ CHAPTER 6. USABILITY TEST ......................................................................................๏ผ™๏ผ˜ 6.1. USABILITY TEST GUIDE ...............................................................................................๏ผ™๏ผ˜ 6.2. ASSESSMENT USABILITY TEST ..................................................................................๏ผ‘๏ผ๏ผ 6.2.1 Test planning........................................................................................๏ผ‘๏ผ๏ผ 6.2.2 Laboratory setting................................................................................๏ผ‘๏ผ๏ผ’ 6.2.3 Test conduct and debriefing.................................................................๏ผ‘๏ผ๏ผ– 6.3. RESULT ANALYSIS ..................................................................................................๏ผ‘๏ผ๏ผ– CHAPTER 7. CONCLUSION......................................................................................๏ผ‘๏ผ๏ผ— APPENDIX 1...........................................................................................................๏ผ‘๏ผ‘๏ผ APPENDIX 2...........................................................................................................๏ผ‘๏ผ‘๏ผ‘ APPENDIX 3...........................................................................................................๏ผ‘๏ผ‘๏ผ“ APPENDIX 4...........................................................................................................๏ผ‘๏ผ’๏ผ‘ APPENDIX 5...........................................................................................................๏ผ‘๏ผ’๏ผ” APPENDIX 6...........................................................................................................๏ผ‘๏ผ’๏ผ˜ APPENDIX 7...........................................................................................................๏ผ‘๏ผ“๏ผ“ BIBLIOGRAPHY ......................................................................................................๏ผ‘๏ผ“๏ผ– ๊ตญ๋ฌธ ์ดˆ๋ก ............................................................................................................๏ผ‘๏ผ”๏ผ“Maste

    A systematic approach for the analysis, design and implementation of Telecommunications-Supported Training (TST) systems

    Get PDF
    The objetive of the present thesis is to develop and test out a systematic approach to the analysis, design and implementation of Telecommunications-Supported Training (TST) systems. The Literature Review offers a set of approaches to similar problems in the field of Information Systems. Several other disciplines have also been considered: Psychology of Human Factors, Organizational and Innovation Theory, and applied research being currently carried out under the EU DELTA Programme. A global User-Centred Model of TST has been developed, based on the wellestablished principles of Systems Engineering and Soft Systems Methodology. The theoretical basis for this model is the concept of TST Architecture, conceived as a functional arrangement of technical components which are introduced in order to improve the performance of the actors involved in the system. The other key aspect is the design of a set of Adoption Strategies, aiming for the creation of the necessary conditions to achieve user acceptance of the technologies implemented. Following these principles, the ADAM (Architectural Design and Adoption Model) systematic approach is developed. It is structured in five stages: Context Analysis, System Analysis, System Design, System Implementation and System Maintenance. Each stage is structured into steps and activities, described in terms of key points, outcomes, deliverables, and roles involved. The ADAM approach has been tested out in its twofold dimension of analyzing already implemented TST systems and designing new ones. The first case discusses the application of ADAM to the EU Multimedia TeleSchool (MTS) TST system. The test is completed by discussing the design and implementation, performed by the author, of a TST system at the Universidad Politecnica de Madrid. The results confirm the usefulness of ADAM both for practitioners and researchers in the field. Also, the TST model is extended as regards the components of acceptance and adoption, and their impact on the introduction of technologies in organizations

    Mediating disruption in human-computer interaction from implicit metrics of attention

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007.Includes bibliographical references (p. 143-150).Multitasking environments cause people to be interrupted constantly, often disrupting their ongoing activities and impeding reaching their goals. This thesis presents a disruption reducing approach designed to support the user's goals and optimize productivity that is based on a model of the user's receptivity to an interruption. The model uses knowledge of the interruption content, context and priority of the task(s) in progress, user actions and goal-related concepts to mediate interruptions. The disruption management model is distinct from previous work by the addition of implicit sensors that deduce the interruption content and user context to help determine when an interruption will disrupt an ongoing activity. Domain-independent implicit sensors include mouse and keyboard behaviors, and goal-related concepts extracted from the user documents. The model also identifies the contextual relationship between interruptions and user goals as an important factor in how interruptions are controlled. The degree to which interruptions are related to the user goal determines how those interruptions will be received. We tested and evolved the model in various cases and showed significant improvement in both productivity and satisfaction. A disruption manager application controls interruptions on common desktop computing activities, such as web browsing and instant messaging. The disruption manager demonstrates that mediating interruptions by supporting the user goals can improve performance and overall productivity. Our evaluation shows an improvement in success of over 25% across prioritization conditions for real life computing environments.(cont.) Goal priority and interruption relevance play an important role in the interruption decision process and several experiments these factors on people's reactions and availability to interruptions, and overall performance. These experiments demonstrate that people recognize the potential benefits of being interrupted and adjust their susceptibility to interruptions during highly prioritized tasks. The outcome of this research includes a usable model that can be extended to tasks as diverse as driving an automobile and performing computer tasks. This thesis supports mediating technologies that will recognize the value of communication and control interruptions so that people are able to maintain concentration amidst their increasingly busy lifestyles.by Ernesto Arroyo Acosta.Ph.D
    • โ€ฆ
    corecore