216 research outputs found

    Efficiency Improvement of Measurement Pose Selection Techniques in Robot Calibration

    Get PDF
    The paper deals with the design of experiments for manipulator geometric and elastostatic calibration based on the test-pose approach. The main attention is paid to the efficiency improvement of numerical techniques employed in the selection of optimal measurement poses for calibration experiments. The advantages of the developed technique are illustrated by simulation examples that deal with the geometric calibration of the industrial robot of serial architecture

    Industry-oriented Performance Measures for Design of Robot Calibration Experiment

    Get PDF
    The paper focuses on the accuracy improvement of geometric and elasto-static calibration of industrial robots. It proposes industry-oriented performance measures for the calibration experiment design. They are based on the concept of manipulator test-pose and referred to the end-effector location accuracy after application of the error compensation algorithm, which implements the identified parameters. This approach allows the users to define optimal measurement configurations for robot calibration for given work piece location and machining forces/torques. These performance measures are suitable for comparing the calibration plans for both simple and complex trajectories to be performed. The advantages of the developed techniques are illustrated by an example that deals with machining using robotic manipulator

    Optimization of measurement configurations for geometrical calibration of industrial robot

    Get PDF
    The paper is devoted to the geometrical calibration of industrial robots employed in precise manufacturing. To identify geometric parameters, an advanced calibration technique is proposed that is based on the non-linear experiment design theory, which is adopted for this particular application. In contrast to previous works, the calibration experiment quality is evaluated using a concept of the user-defined test-pose. In the frame of this concept, the related optimization problem is formulated and numerical routines are developed, which allow user to generate optimal set of manipulator configurations for a given number of calibration experiments. The efficiency of the developed technique is illustrated by several examples.Comment: arXiv admin note: text overlap with arXiv:1211.610

    Design of Calibration Experiments for Identification of Manipulator Elastostatic Parameters

    Get PDF
    The paper is devoted to the elastostatic calibration of industrial robots, which is used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism. To estimate parameters of this model, an advanced calibration technique is applied that is based on the non-linear experiment design theory, which is adopted for this particular application. In contrast to previous works, it is proposed a concept of the user-defined test-pose, which is used to evaluate the calibration experiments quality. In the frame of this concept, the related optimization problem is defined and numerical routines are developed, which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments. Some specific kinematic constraints are also taken into account, which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment. The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining.Comment: arXiv admin note: substantial text overlap with arXiv:1211.573

    Design of Experiments for Calibration of Planar Anthropomorphic Manipulators

    Get PDF
    The paper presents a novel technique for the design of optimal calibration experiments for a planar anthropomorphic manipulator with n degrees of freedom. Proposed approach for selection of manipulator configurations allows essentially improving calibration accuracy and reducing parameter identification errors. The results are illustrated by application examples that deal with typical anthropomorphic manipulators.Comment: Advanced Intelligent Mechatronics (AIM), 2011 IEEE/ASME International Conference on, Budapest : Hungary (2011

    Kinematic calibration of Delta robot using distance measurements

    Get PDF
    This paper deals with kinematic calibration of the Delta robot using distance measurements. The work is mainly placed upon: (1) the error modeling with a goal to classify the source errors affecting both the compensatable and uncompensatable pose accuracy; (2) the full/partial source error identification using a set of distance measurements acquired by a laser tracker; and (3) design of a linearized compensator for real-time error compensation. Experimental results on a prototype show that positioning accuracy of the robot can significantly be improved by the proposed approach

    Tolerance design and kinematic calibration of a 4-DOF pick-and-place parallel robot

    Get PDF
    This paper presents a comprehensive methodology for ensuring the geometric pose accuracy of a 4-DOF high-speed pick-and-place parallel robot having an articulated travelling plate. The process is implemented by four steps: (1) formulation of the error model containing all possible geometric source errors; (2) tolerance design of the source errors affecting the uncompensatable pose accuracy via sensitivity analysis; (3) identification of the source errors affecting the compensatable pose accuracy via a simplified model and distance measurements; and (4) development of a linearized error compensator for real-time implementation. Experimental results show that a tilt angular accuracy of 0.1/100, and a volumetric/rotational accuracy of 0.5 mm/±0.8 deg of the end-effector can be achieved over the cylindrical task workspac

    Étalonnage des machines-outils à cinq axes : configuration optimisée des artefacts et de la séquence de mesure de la méthode SAMBA en vue d'une estimation efficace des erreurs géométriques

    Get PDF
    RÉSUMÉ Les machines-outils à commande numérique (MOCN) sont assujetties à plusieurs sources d’erreurs, entre autres géométriques, thermiques et dynamiques qui peuvent contribuer à la dégradation de leurs performances. Une attention particulière est prêtée à l’usinage multi axes où le mouvement simultané des axes prismatiques et rotatifs engendre une erreur de positionnement et d’orientation de l’outil par rapport au point à usiner sur la pièce. Des moyens d’évaluations de ces erreurs et de leurs causes, à des fins de maintenance et de compensation, sont alors à développer en tenant compte des aspects économiques, techniques et humains. Il s’agit en particulier de minimiser les temps de mesures qui résultent en des arrêts de production et par conséquent des coûts indirects à éviter à l’entreprise. Le but de la présente thèse est d’améliorer la précision d’une machine-outil à cinq axes à travers l’optimisation d’une technique d’étalonnage existante. En vue de prédire au mieux le comportement de la machine, l’élaboration d’une routine d’inspection adéquate est nécessaire. Ceci comprend un positionnement optimal des éléments du dispositif de mesure, sous forme de billes de référence, ainsi qu’une planification judicieuse des poses de palpage dans l’espace de travail. Une approche analytique basée sur un algorithme d’échange pour la conception d’un plan D-optimal est adoptée pour générer des scénarios d’étalonnage en fonction des écarts géométriques à estimer, modélisés sous forme de polynôme, et du nombre d’inconnues définissant le modèle de la machine. L’évaluation de la pertinence des tests est effectuée à partir d’une étude comparative de critères appelés communément en robotique, indices d’observabilité, issus de l’analyse de la matrice jacobienne d’identification. La qualité prédictive des séquences de mesures générées par simulation est validée en deux étapes : la première consiste en des expériences de répétabilité des tests optimisés imbriqués, la deuxième est une analyse de l’incertitude sur les tests et les paramètres d’erreurs identifiés. Une validation par mesure directe d’une cale calibrée, montée sur la table de la machine, permet de confirmer les résultats qualitatifs fournis par l’indice d’observabilité et ceux quantitatifs déduits de l’estimation de l’incertitude. Les résultats montrent que les routines de vérification proposées sont capables de donner une description complète de la géométrie imparfaite de la machine en incluant les écarts de membrures et les écarts cinématiques. Une amélioration de 55.7% de la valeur de l’indice d’observabilité est constatée par rapport à celle de la stratégie de mesure utilisée présentement dans le laboratoire.----------ABSTRACT Numerically controlled machine tools are prone to potential geometric, thermal and dynamic errors that can have a negative impact on their performance. A careful attention is paid to multi-axis machining where the simultaneous movement of prismatic and rotary axes lead to a positioning and orientation deviation of the tool relative to the workpiece. Tools for assessing these errors and their causes, for maintenance and compensation purposes, are to be developed while taking into consideration economic, technical and human aspects. In particular, this involves minimizing the measurement duration which results in production downtimes and consequently indirect costs to be avoided by the company. This thesis aims to improve the accuracy of a five-axis machine tool through the optimization of an existing calibration technique. For a better prediction of the machine tool erroneous behavior, an adequate inspection routine is sought. This includes optimal positioning of the measuring device components, i.e. master balls, as well as a wise planning of the probing poses in the working volume. An analytical approach based on an exchange algorithm for a D-optimal design is carried out to generate calibration scenarios based on the estimated geometric errors, described as ordinary polynomials, and the number of unknowns predefined in the machine model. The evaluation of the optimized tests suitability relies on a comparison of criteria, commonly known in the robotics field as observability indices and are the outcome of the identification Jacobian matrix analysis. Simulation results are validated in two steps: the first one consists of a repeatability testing of nested optimized probing sequences while the second one is an analysis of the estimated uncertainty on the overall tests and the identified error parameters. Validation via a direct measuring of a calibrated gauge block, mounted on the machine workpiece, confirms the qualitative results provided by the observability index and the quantitative ones concluded from the uncertainty estimation. The outcome suggests that the proposed geometric model updating routines enable a comprehensive description of the machine tool behavior by including location errors and error motions. An improvement of 55.7% of the observability index value is depicted with respect to the currently used measurement strategy. The optimal calibration test duration varies between 30 minutes while probing one master ball for axes location errors identification and 2 hours and 18 minutes for the estimation of both axes location errors and error motions while measuring an artefact of three master balls

    Design of Calibration Experiments for Identification of Manipulator Elastostatic Parameters

    Get PDF
    International audienceThe paper is devoted to the elastostatic calibration of industrial robots, which is used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism. To estimate parameters of this model, an advanced calibration technique is applied that is based on the non-linear experiment design theory, which is adopted for this particular application. In contrast to previous works, it is proposed a concept of the user-defined test-pose, which is used to evaluate the calibration experiments quality. In the frame of this concept, the related optimization problem is defined and numerical routines are developed, which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments. Some specific kinematic constraints are also taken into account, which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment. The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining
    • …
    corecore