1,950 research outputs found

    A randomized concave programming method for choice network revenue management

    Get PDF
    Models incorporating more realistic models of customer behavior, as customers choosing from an offer set, have recently become popular in assortment optimization and revenue management. The dynamic program for these models is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper we propose a new approach called SDCP to solving CDLP based on segments and their consideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound on the dynamic program but coincides with CDLP for the case of non-overlapping segments. If the number of elements in a consideration set for a segment is not very large (SDCP) can be applied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by (i) simulations, called the randomized concave programming (RCP) method, and (ii) by adding cuts to a recent compact formulation of the problem for a latent multinomial-choice model of demand (SBLP+). This latter approach turns out to be very effective, essentially obtaining CDLP value, and excellent revenue performance in simulations, even for overlapping segments. By formulating the problem as a separation problem, we give insight into why CDLP is easy for the MNL with non-overlapping considerations sets and why generalizations of MNL pose difficulties. We perform numerical simulations to determine the revenue performance of all the methods on reference data sets in the literature.assortment optimization, randomized algorithms, network revenue management.

    An enhanced concave program relaxation for choice network revenue management

    Get PDF
    The network choice revenue management problem models customers as choosing from an offer set, and the firm decides the best subset to offer at any given moment to maximize expected revenue. The resulting dynamic program for the firm is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, under the choice-set paradigm when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper, starting with a concave program formulation called SDCP that is based on segment-level consideration sets, we add a class of constraints called product constraints (ĻƒPC), that project onto subsets of intersections. In addition we propose a natural direct tightening of the SDCP called ESDCPĪŗ, and compare the performance of both methods on the benchmark data sets in the literature. In our computational testing on the benchmark data sets in the literature, 2PC achieves the CDLP value at a fraction of the CPU time taken by column generation. For a large network our 2PC procedure runs under 70 seconds to come within 0.02% of the CDLP value, while column generation takes around 1 hour; for an even larger network with 68 legs, column generation does not converge even in 10 hours for most of the scenarios while 2PC runs under 9 minutes. Thus we believe our approach is very promising for quickly approximating CDLP when segment consideration sets overlap and the consideration sets themselves are relatively small

    An enhanced concave program relaxation for choice network revenue management

    Get PDF
    The network choice revenue management problem models customers as choosing from an offer-set, and the firm decides the best subset to offer at any given moment to maximize expected revenue. The resulting dynamic program for the firm is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, under the choice-set paradigm when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper, starting with a concave program formulation based on segment-level consideration sets called SDCP, we add a class of constraints called product constraints, that project onto subsets of intersections. In addition we propose a natural direct tightening of the SDCP called ?SDCP, and compare the performance of both methods on the benchmark data sets in the literature. Both the product constraints and the ?SDCP method are very simple and easy to implement and are applicable to the case of overlapping segment consideration sets. In our computational testing on the benchmark data sets in the literature, SDCP with product constraints achieves the CDLP value at a fraction of the CPU time taken by column generation and we believe is a very promising approach for quickly approximating CDLP when segment consideration sets overlap and the consideration sets themselves are relatively small.discrete-choice models, network revenue management, optimization

    A review of choice-based revenue management : theory and methods

    Get PDF
    Over the last fifteen years, the theory and practice of revenue management has experienced significant developments due to the need to incorporate customer choice behavior. In this paper, we portray these developments by reviewing the key literature on choice-based revenue management, specifically focusing on methodological publications of availability control over the years 2004ā€“2017. For this purpose, we first state the choice-based network revenue management problem by formulating the underlying dynamic program, and structure the review according to its components and the resulting inherent challenges. In particular, we first focus on the demand modeling by giving an overview of popular choice models, discussing their properties, and describing estimation procedures relevant to choice-based revenue management. Second, we elaborate on assortment optimization, which is a fundamental component of the problem. Third, we describe recent developments on tackling the entire control problem. We also discuss the relation to dynamic pricing. Finally, we give directions for future research

    Network revenue management with product-specific no-shows

    Get PDF
    Revenue management practices often include overbooking capacity to account for customers who make reservations but do not show up. In this paper, we consider the network revenue management problem with no-shows and overbooking, where the show-up probabilities are specific to each product. No-show rates differ significantly by product (for instance, each itinerary and fare combination for an airline) as sale restrictions and the demand characteristics vary by product. However, models that consider no-show rates by each individual product are difficult to handle as the state-space in dynamic programming formulations (or the variable space in approximations) increases significantly. In this paper, we propose a randomized linear program to jointly make the capacity control and overbooking decisions with product-specific no-shows. We establish that our formulation gives an upper bound on the optimal expected total profit and our upper bound is tighter than a deterministic linear programming upper bound that appears in the existing literature. Furthermore, we show that our upper bound is asymptotically tight in a regime where the leg capacities and the expected demand is scaled linearly with the same rate. We also describe how the randomized linear program can be used to obtain a bid price control policy. Computational experiments indicate that our approach is quite fast, able to scale to industrial problems and can provide significant improvements over standard benchmarks.Network revenue management, linear programming, simulation, overbooking, no-shows.

    Approximate Dynamic Programming via a Smoothed Linear Program

    Get PDF
    We present a novel linear program for the approximation of the dynamic programming cost-to-go function in high-dimensional stochastic control problems. LP approaches to approximate DP have typically relied on a natural ā€œprojectionā€ of a well-studied linear program for exact dynamic programming. Such programs restrict attention to approximations that are lower bounds to the optimal cost-to-go function. Our programā€”the ā€œsmoothed approximate linear programā€ā€”is distinct from such approaches and relaxes the restriction to lower bounding approximations in an appropriate fashion while remaining computationally tractable. Doing so appears to have several advantages: First, we demonstrate bounds on the quality of approximation to the optimal cost-to-go function afforded by our approach. These bounds are, in general, no worse than those available for extant LP approaches and for specific problem instances can be shown to be arbitrarily stronger. Second, experiments with our approach on a pair of challenging problems (the game of Tetris and a queueing network control problem) show that the approach outperforms the existing LP approach (which has previously been shown to be competitive with several ADP algorithms) by a substantial margin

    Bounds for Markov Decision Processes

    Get PDF
    We consider the problem of producing lower bounds on the optimal cost-to-go function of a Markov decision problem. We present two approaches to this problem: one based on the methodology of approximate linear programming (ALP) and another based on the so-called martingale duality approach. We show that these two approaches are intimately connected. Exploring this connection leads us to the problem of finding "optimal" martingale penalties within the martingale duality approach which we dub the pathwise optimization (PO) problem. We show interesting cases where the PO problem admits a tractable solution and establish that these solutions produce tighter approximations than the ALP approach. Ā© 2013 The Institute of Electrical and Electronics Engineers, Inc
    • ā€¦
    corecore