42 research outputs found

    Adaptive data analysis for damage detection and system identification in civil infrastructure

    Get PDF
    Time-varying structural systems are often encountered in civil engineering. As extreme events occur more frequently and severely in recent years, more structures are loaded beyond their elastic conditions and may thus experience damage in the years to come. Even if structures remain elastic, energy dissipation devices installed on structures often reveal hysteretic behaviors under earthquake loads. Therefore, it is imperative to develop and implement novel technologies that enable the identification and damage detection of time-varying systems. In this dissertation, adaptive wavelet transform (AWT) and multiple analytical mode decomposition (M-AMD) are proposed and applied to identify system properties and detect damage in structures. AWT is an optimized time-frequency representation of dynamic responses for the extraction of features. It is defined as an average of overlapped short-time wavelet transforms with time-varying wavelet parameters in order to extract time-dependent frequencies. The effectiveness of AWT is demonstrated by various analytical signals, acoustic emission and impact echo responses. M-AMD is a response decomposition method for the identification of weakly to moderately nonlinear oscillators based on vibration responses. It can be used to accurately separate the low and high frequency components of time-varying stiffness and damping coefficients in dynamic systems. The efficiency and accuracy of the proposed M-AMD are evaluated with three characteristic nonlinear oscillators and a 1/4-scale 3-story building model with frictional damping under seismic excitations. Finally, AWT-based M-AMD is applied to decompose the measured dynamic responses of a 1/20-scale cable-stayed bridge model tested on four shake tables and evaluate the progression of damage under increasing earthquake loads --Abstract, page iii

    Large amplitude dynamics of micro/nanomechanical resonators actuated with electrostatic pulses

    Get PDF
    International audienceIn the field of resonant NEMS design, it is a common misconception that large-amplitude motion, and thus large signal-to-noise ratio, can only be achieved at the risk of oscillator instability. In the present paper, we show that very simple closed-loop control schemes can be used to achieve stable largeamplitude motion of a resonant structure, even when jump resonance (caused by electrostatic softening or Duffing hardening) is present in its frequency response. We focus on the case of a resonant accelerometer sensing cell, consisting in a nonlinear clamped-clamped beam with electrostatic actuation and detection, maintained in an oscillation state with pulses of electrostatic force that are delivered whenever the detected signal (the position of the beam) crosses zero. We show that the proposed feedback scheme ensures the stability of the motion of the beam much beyond the critical Duffing amplitude and that, if the parameters of the beam are correctly chosen, one can achieve almost full-gap travel range without incurring electrostatic pull-in. These results are illustrated and validated with transient simulations of the nonlinear closed-loop system

    Виявлення сигналів з використанням дискретної обробки атрактора Дуффінга

    Get PDF
    The results of detection of periodic signals using the chaos theory based on discrete processing of the Duffing attractor in the Poincare section were considered.A chaotic Duffing system characterized by high sensitivity to periodic signals and a possibility of implementation by means of a relatively simple circuit was chosen for the study.Response of the Duffing system to the periodic influence was analyzed. It was shown that when amplitude of periodic components of the input signal grows at a frequency of driving oscillations, there is a shift of the phase trajectory along the Poincare section which is characterized by fractal geometry. Types of the Duffing attractor changes that result from the influence of a periodic input signal were determined. Control regions for recording types of the phase trajectory dynamics were identified in the phase plane formed by the output signal and its derivative. In accordance with the characteristics of the obtained phase trajectories, a truth table was constructed. It enables estimation of influence of the periodic component with a sufficiently large time sampling increment which is important for ensuring speed of the signal processing devices. Transforms were obtained that describe the process of detecting periodic signals by discrete processing of the Duffing attractor in the Poincare section.Based on the formulated transforms and the truth table, a block diagram of a device for detecting periodic signals in noise was proposed. The proposed device can be used as an input unit to implement the Duffing system based on an analog electric circuit.Values of discrete estimates of amplitude of the periodic component of the input signal according to the shift of the phase trajectory of the Duffing system with respect to the attractor in the Poincare section were obtained. According to the modeling results, the proposed circuit makes it possible to detect periodic signals at low values of the signal-to-noise ratio.Рассмотрены результаты обнаружения периодических сигналов с использованием теории хаоса, на основе дискретной обработки аттрактора Дуффинга в сечении Пуанкаре.Для проведения исследований избрана хаотическая система Дуффинга, которая характеризуется высокой чувствительностью к сигналам периодической формы, и может быть реализована относительно несложной схемой.Проведен анализ реакции системы Дуффинга на периодическое воздействие. Показано, что при увеличении амплитуды периодических составляющих входного сигнала на частоте задающих колебаний, происходит смещение фазовой траектории вдоль сечения Пуанкаре, который характеризуется фрактальной геометрией. Определены типы изменений аттрактора Дуффинга, которые возникают в результате действия периодического сигнала на входе. В фазовой плоскости, образованной выходным сигналом и его производной, выделены контрольные области для фиксации типов динамики фазовой траектории. В соответствии с характеристиками полученных фазовых траекторий, построена таблица истинности, которая позволяет выполнять оценку влияния периодической составляющей с достаточно большим шагом дискретизации по времени, что важно для обеспечения производительности устройств обработки сигналов.Получены функционалы, описывающие процесс обнаружения периодических сигналов путем дискретной обработки аттрактора системы Дуффинга в сечении Пуанкаре.На основе сформулированных функционалов и таблицы истинности предложена структурная схема устройства для обнаружения периодического сигнала в шуме. В предложенном устройстве, в качестве входного блока, может использоваться реализация системы Дуффинга на основе аналоговой электрической цепи.Получены значения дискретных оценок амплитуды периодической составляющей входного сигнала по смещению фазовой траектории системы Дуффинга относительно аттрактора в сечении Пуанкаре. Согласно результатам проведенного моделирования, предложенная схема позволяет обнаруживать периодические сигналы при низких значениях отношения сигнал/шумРозглянуто результати виявлення періодичних сигналів з використанням теорії хаосу, на основі дискретної обробки атрактора Дуффінга у перерізі Пуанкаре.Для проведення досліджень обрано хаотичну систему Дуффінга, яка характеризується високою чутливістю до сигналів періодичної форми, і може бути реалізована відносно нескладною схемою.Проведено аналіз реакції системи Дуффінга на періодичний вплив. Показано, що при збільшенні амплітуди періодичних складових вхідного сигналу на частоті задаючих коливань, відбувається зсув фазової траєкторії вздовж перерізу Пуанкаре, який характеризується фрактальною геометрією. Визначено типи змін атрактора Дуффінга, які виникають внаслідок дії періодичного сигналу на вході. У фазовій площині, утвореній вихідним сигналом і його похідною, виділено контрольні області для фіксації типів динаміки фазової траєкторії. Відповідно до характеристик отриманих фазових траєкторій, побудовано таблицю істинності, яка дозволяє виконувати оцінку впливу періодичної складової із достатньо великим кроком дискретизації за часом, що важливо для забезпечення швидкодії пристроїв обробки сигналів. Отримано функціонали, які описують процес виявлення періодичних сигналів шляхом дискретної обробки атрактора системи Дуффінга у перерізі Пуанкаре.На основі сформульованих функціоналів та таблиці істинності запропоновано структурну схему пристрою для виявлення періодичного сигналу в шумі. У запропонованому пристрої, в якості вхідного блоку, може використовуватися реалізація системи Дуффінга на основі аналогового електричного кола.Отримано значення дискретних оцінок амплітуди періодичної складової вхідного сигналу за зміщенням фазової траєкторії системи Дуффінга відносно атрактора у перерізі Пуанкаре. Згідно з результатами проведеного моделювання, запропонована схема дозволяє виявляти періодичні сигнали при низьких значеннях відношення сигнал/шу

    Discerning non-autonomous dynamics

    Get PDF
    Structure and function go hand in hand. However, while a complex structure can be relatively safely broken down into the minutest parts, and technology is now delving into nanoscales, the function of complex systems requires a completely different approach. Here the complexity clearly arises from nonlinear interactions, which prevents us from obtaining a realistic description of a system by dissecting it into its structural component parts. At best, the result of such investigations does not substantially add to our understanding or at worst it can even be misleading. Not surprisingly, the dynamics of complex systems, facilitated by increasing computational efficiency, is now readily tackled in the case of measured time series. Moreover, time series can now be collected in practically every branch of science and in any structural scale—from protein dynamics in a living cell to data collected in astrophysics or even via social networks. In searching for deterministic patterns in such data we are limited by the fact that no complex system in the real world is autonomous. Hence, as an alternative to the stochastic approach that is predominantly applied to data from inherently non-autonomous complex systems, theory and methods specifically tailored to non-autonomous systems are needed. Indeed, in the last decade we have faced a huge advance in mathematical methods, including the introduction of pullback attractors, as well as time series methods that cope with the most important characteristic of non-autonomous systems—their time-dependent behaviour. Here we review current methods for the analysis of non-autonomous dynamics including those for extracting properties of interactions and the direction of couplings. We illustrate each method by applying it to three sets of systems typical for chaotic, stochastic and non-autonomous behaviour. For the chaotic class we select the Lorenz system, for the stochastic the noiseforced Duffing system and for the non-autonomous the Poincaré oscillator with quasiperiodic forcing. In this way we not only discuss and review each method, but also present properties which help to clearly distinguish the three classes of systems when analysed in an inverse approach—from measured, or numerically generated data. In particular, this review provides a framework to tackle inverse problems in these areas and clearly distinguish non-autonomous dynamics from chaos or stochasticity

    Hybrid LiNbO3-(Al)GaAs devices for quantum dot optomechanics

    Get PDF
    Acoustic phonons, in the form of elastic waves, couple easily to many excitations present in condensed matter which makes them ideally suited for the design and realization of hybrid quantum systems. In this context, surface acoustic waves (SAWs), mechanical waves confined to the surface of solid state substrates and generated by interdigital transducers (IDTs) on piezoelectric substrates, have been proven to be a useful tool for the control of quantum systems. In parallel, semiconductor quantum dots (QDs) have also been considered as an essential part of future quantum systems and technology as an optically active and addressable two-level system and as an efficient source of single and indistinguishable photons. In this work, we focus on the control of optically active semiconductor QDs by the mechanical field of a SAW through the deformation potential coupling. The strength of this interaction can be quantified by a coupling parameter just like for many hybrid quantum devices, in this case, it is the optomechanical coupling parameter gOM linking the modulation of the emission energy as a function of the surface displacement of the SAW. In this thesis, the goal is to increase the optomechanical coupling between the two systems. For this purpose, the III-V semiconductor quantum dots are transferred onto a strong piezoelectric substrate, LiNbO3. After a brief introduction on surface acoustic waves, semiconductor quantum dots and their interaction, the fabrication technique used to create the hybrid devices analysed in this work is presented. This technique, called epitaxial lift-off, is used to release a QD membrane from its GaAs substrate to transfer it onto a LiNbO3 SAW-chip. Next, the coupling of the surface acoustic waves is studied first through finite element simulations which show an increased optomechanical coupling parameter due to a localisation of the SAW field inside the membrane for increasing SAW frequency. The simulations results are confirmed by fabricating and measuring an hybridised SAW sample. The coupling of the wave to the membrane is quantified by measuring both the SAW signal transmitted across the hybridised delay line and the optomechanical response of the dots inside the epilayer. To further increase the sound-matter coupling, the epilayer was transferred inside a SAW resonator cavity where both the electrical reflection of the resonator and the optomechanical coupling of the dots to the resonator modes were recorded. The QD-SAW coupling exhibits a more complex behaviour than expected and finite element method simulations show that the origin of this behaviour is not the classical linear deformation potential coupling. Finally, the transferred epilayer can be patterned into more complex structures such as photonic ring resonators and their access waveguides. The interaction between the SAW, the QDs and the resonators was measured and analysed. The QDs were tuned in and out of resonance with the ring resonator modes. In addition to the photonic modes, the emergence of phononic resonances was observed. These phononic resonances showed an interesting non-linear behaviour which is analysed in more detail.Akustische Phononen in Form von elastischen Wellen koppeln leicht an viele Anregungen in kondensierter Materie, wodurch sie sich ideal für die Entwicklung und die Realisierung hybrider Quantensysteme eignen. In diesem Zusammenhang haben sich akustische Oberflächenwellen (SAWs), mechanische Wellen, deren Ausbreitung auf die Oberfläche von Festkörsubstraten beschränkt ist und mittels Interdigitalwandlern (IDTs) auf piezoelektrischen Substraten erzeugt werden können, als nützliches Werkzeug zur Steuerung von Quantensystemen erwiesen. Gleichzeitig werden Halbleiter-Quantenpunkte (QDs) als wesentlicher Bestandteil zukünftiger Quantensysteme und -technologien betrachtet, da es sich bei diesen um optisch aktive und einzeln ansprechbare Zwei-Niveau-Systeme und damit um effiziente Quellen einzelner und ununterscheidbarer Photonen handelt. Diese Arbeit konzentriert sich auf die Kontrolle optisch aktiver Halbleiter-QDs durch das mechanische Feld einer SAW mittels der Deformationspotentialkopplung. Die Stärke dieser Wechselwirkung kann, wie bei vielen hybriden Quantenbauelementen, durch einen Kopplungsparameter quantifiziert werden, in diesem Fall durch den optomechanischen Kopplungsparameter gOM, der die Modulation der Quantenpunkt-Emissionsenergie mit der Auslenkung der Oberfläche durch die SAW verknüpft. Ziel dieser Arbeit ist es, die optomechanische Kopplung zwischen den beiden Systemen zu erhöhen. Dazu werden die III-V Halbleiter-Quantenpunkte auf ein starkes piezoelektrisches Substrat, LiNbO3, übertragen. Nach einer kurzen Einführung zu akustischen Oberflächenwellen, Halbleiter-Quantenpunkten und deren Wechselwirkung wird die Fabrikationstechnik zur Herstellung der in dieser Arbeit analysierten Hybridbauelemente vorgestellt. Diese Technik, die als epitaktischer Lift-Off bezeichnet wird, wird verwendet, um eine QD-Membran von ihrem GaAs-Substrat zu lösen, um sie auf einen LiNbO3-SAW-Chip zu übertragen. Daraufhin wird die Kopplung der akustischen Oberflächenwellen zur QD-Membran zunächst durch Finite-Elemente-Simulationen untersucht. Dabei zeigt sich mit steigender SAW-Frequenz, aufgrund einer Lokalisierung des SAW-Feldes innerhalb der Membran, ein erhöhter optomechanischer Kopplungsparameter. Die Simulationsergebnisse werden durch die Herstellung und Untersuchung einer hybridisierten SAW-Probe bestätigt. Die Kopplung der Oberflächenwelle an die Membran wird quantifiziert, indem sowohl das über die hybridisierte Verzögerungsleitung übertragene SAW-Signal, als auch die optomechanische Reaktion der Quantenpunkte innerhalb der Epischicht gemessen werden. Um die Schall-Materie-Kopplung weiter zu erhöhen, wurde die Epischicht in einen SAW-Resonator transferiert. Für dieses System wurde sowohl die elektrische Reflexion des Resonators als auch die optomechanische Kopplung der Quantenpunkte an die Resonatormoden untersucht. Die QD-SAW-Kopplung zeigt dabei ein komplexeres Verhalten als erwartet und Simulationen mittels der Finite-Elemente-Methode zeigen, dass der Ursprung dieses Verhaltens nicht in der klassischen linearen Verformungspotentialkopplung liegt. Abschließend wird eine übertragene Epischicht weiter strukturiert um komplexere photonische Strukturen wie Ringresonatoren und deren Zugangswellenleiter herzustellen. Die Interaktion zwischen SAW, QDs und Resonatoren wurde dabei gemessen und im Detail analysiert. Dabei kann die SAW dazu benutz werden, um einen Quantenpunkt dynamisch in Resonanz mit der Ringresonatormode zu bringen. Neben den photonischen Resonanzen kann dabei auch das Auftreten von phononischen Moden innerhalb der Ringresonatoren beobachtet werden. Diese phononischen Resonanzen zeigen ein ausgeprägtes nichtlineares Verhalten, welches im Detail analysiert wird
    corecore