86 research outputs found

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques

    Virtual SATCOM, Long Range Broadband Digital Communications

    Get PDF
    The current naval strategy is based on a distributed force, networked together with high-speed communications that enable operations as an intelligent, fast maneuvering force. Satellites, the existing network connector, are weak and vulnerable to attack. HF is an alternative, but it does not have the information throughput to meet the distributed warfighting need. The US Navy does not have a solution to reduce dependency on space-based communication systems while providing the warfighter with the required information speed. Virtual SATCOM is a solution that can match satellite communications (SATCOM) data speed without the vulnerable satellite. It is wireless communication on a High Frequency (HF) channel at SATCOM speed. We have developed an innovative design using high power and gain, ground-based relay systems. We transmit extremely wide-wideband HF channels from ground stations using large directional antennas. Our system starts with a highly directional antenna with a narrow beam that enables increased bandwidth without interfering with other spectrum users. The beam focus and power provide a high SNR across a wideband channel with data rates of 10 Mbps; 1000 times increase in HF data speed. Our modeling of the ionosphere shows that the ionosphere has more than adequate bandwidth to communicate at 3000 km and high speeds while avoiding detection. We designed a flexible structure adjustable to the dynamic ionosphere. Our design provides a high-speed communications path without the geo-location vulnerability of legacy HF methods. Our invention will benefit mobile users using steerable beam forming apertures with wide bandwidth signals. This dissertation will focus on three areas: an examination of the ionosphere’s ability to support the channel, design of a phased array antenna that can produce the narrow beam, and design of signal processing that can accommodate the wideband HF frequency range. Virtual SATCOM is exciting research that can reduce cost and increase access to long-range, high data rate wireless communications

    Electronic warfare technology

    Get PDF
    An analysis of the modern technology employed in Electrical Warfare systems is carried out. Electronic and optical techniques presently used in the detection, localization, processing and identification of signals, linked with active and passive countermeasures and countercountermeasures, are analyzed. "Seal-world" designs and configurations are discussed with respect to effectiveness, reliability and designs and operational trade-offs. Topics are divided according the modern classification of Electronic Warfare, covering confusion reflectors, masking and deceiver jammers, intercept receivers as well as the new field of Electro-Optical Electronic Warfare. special characteristics inherent to the Surface Navy are pointed out. In the Appendices, the experiment of a circuit devised to be useful in signal recognition is described, and a list of missiles with electronic and guidance characteristics is presented.http://archive.org/details/electronicwarfar00bittLieutenant Commander, Brazilian NavyApproved for public release; distribution is unlimited

    Research Naval Postgraduate School, v.13, no.1, February 2003

    Get PDF
    NPS Research is published by the Research and Sponsored Programs, Office of the Vice President and Dean of Research, in accordance with NAVSOP-35. Views and opinions expressed are not necessarily those of the Department of the Navy.Approved for public release; distribution is unlimited

    Unmanned Aircraft Systems in the Cyber Domain

    Get PDF
    Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions. This second edition discusses state-of-the-art technology issues facing US UAS designers. It focuses on counter unmanned aircraft systems (C-UAS) – especially research designed to mitigate and terminate threats by SWARMS. Topics include high-altitude platforms (HAPS) for wireless communications; C-UAS and large scale threats; acoustic countermeasures against SWARMS and building an Identify Friend or Foe (IFF) acoustic library; updates to the legal / regulatory landscape; UAS proliferation along the Chinese New Silk Road Sea / Land routes; and ethics in this new age of autonomous systems and artificial intelligence (AI).https://newprairiepress.org/ebooks/1027/thumbnail.jp

    Scattering by two spheres: Theory and experiment

    Get PDF

    Multifunction Radios and Interference Suppression for Enhanced Reliability and Security of Wireless Systems

    Get PDF
    Wireless connectivity, with its relative ease of over-the-air information sharing, is a key technological enabler that facilitates many of the essential applications, such as satellite navigation, cellular communication, and media broadcasting, that are nowadays taken for granted. However, that relative ease of over-the-air communications has significant drawbacks too. On one hand, the broadcast nature of wireless communications means that one receiver can receive the superposition of multiple transmitted signals. But on the other hand, it means that multiple receivers can receive the same transmitted signal. The former leads to congestion and concerns about reliability because of the limited nature of the electromagnetic spectrum and the vulnerability to interference. The latter means that wirelessly transmitted information is inherently insecure. This thesis aims to provide insights and means for improving physical layer reliability and security of wireless communications by, in a sense, combining the two aspects above through simultaneous and same frequency transmit and receive operation. This is so as to ultimately increase the safety of environments where wireless devices function or where malicious wirelessly operated devices (e.g., remote-controlled drones) potentially raise safety concerns. Specifically, two closely related research directions are pursued. Firstly, taking advantage of in-band full-duplex (IBFD) radio technology to benefit the reliability and security of wireless communications in the form of multifunction IBFD radios. Secondly, extending the self-interference cancellation (SIC) capabilities of IBFD radios to multiradio platforms to take advantage of these same concepts on a wider scale. Within the first research direction, a theoretical analysis framework is developed and then used to comprehensively study the benefits and drawbacks of simultaneously combining signals detection and jamming on the same frequency within a single platform. Also, a practical prototype capable of such operation is implemented and its performance analyzed based on actual measurements. The theoretical and experimental analysis altogether give a concrete understanding of the quantitative benefits of simultaneous same-frequency operations over carrying out the operations in an alternating manner. Simultaneously detecting and jamming signals specifically is shown to somewhat increase the effective range of a smart jammer compared to intermittent detection and jamming, increasing its reliability. Within the second research direction, two interference mitigation methods are proposed that extend the SIC capabilities from single platform IBFD radios to those not physically connected. Such separation brings additional challenges in modeling the interference compared to the SIC problem, which the proposed methods address. These methods then allow multiple radios to intentionally generate and use interference for controlling access to the electromagnetic spectrum. Practical measurement results demonstrate that this effectively allows the use of cooperative jamming to prevent unauthorized nodes from processing any signals of interest, while authorized nodes can use interference mitigation to still access the same signals. This in turn provides security at the physical layer of wireless communications
    • …
    corecore