197 research outputs found

    Chiral Vortical Effect in Superfluid

    Full text link
    We consider rotating superfluid pionic liquid, with superfluidity being induced by isospin chemical potential. The rotation is known to result in a chiral current flowing along the axis of the rotation. We argue that in case of superfluidity the chiral current is realized on fermionic zero modes propagating along vortices. The current evaluated in this way differs by a factor of two from the standard one. The reason is that the chiral charge is carried by zero modes which propagate with speed of light, and thus the liquid cannot be described by a single (local) velocity, like it is assumed in standard derivations.Comment: 10 pages. To be published in PRD. Minor changes added; typos fixe

    Anomalous Transport and Generalized Axial Charge

    Get PDF
    In this paper we continue studying the modification of the axial charge in chiral media by macroscopic helicities. Recently it was shown that magnetic reconnections result in a persistent current of zero mode along flux tubes. Here we argue that in general a change in the helical part of the generalized axial charge results in the same phenomenon. Thus one may say that there is a novel realization of chiral effects requiring no initial chiral asymmetry. The transfer of flow helicity to zero modes is analyzed in a toy model based on a vortex reconnection in a chiral superfluid. Then, we discuss the balance between the two competing processes effect of reconnections and the chiral instability on the example of magnetic helicity. We argue that in the general case there is a possibility for the distribution of the axial charge between the magnetic and fermionic forms at the end of the instability.Comment: 19 pages, version accepted in PR

    Chiral Magnetic Effect in Hydrodynamic Approximation

    Full text link
    We review derivations of the chiral magnetic effect (ChME) in hydrodynamic approximation. The reader is assumed to be familiar with the basics of the effect. The main challenge now is to account for the strong interactions between the constituents of the fluid. The main result is that the ChME is not renormalized: in the hydrodynamic approximation it remains the same as for non-interacting chiral fermions moving in an external magnetic field. The key ingredients in the proof are general laws of thermodynamics and the Adler-Bardeen theorem for the chiral anomaly in external electromagnetic fields. The chiral magnetic effect in hydrodynamics represents a macroscopic manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue that the current induced by the magnetic field is dissipation free and talk about a kind of "chiral superconductivity". More precise description is a ballistic transport along magnetic field taking place in equilibrium and in absence of a driving force. The basic limitation is exact chiral limit while the temperature--excitingly enough- does not seemingly matter. What is still lacking, is a detailed quantum microscopic picture for the ChME in hydrodynamics. Probably, the chiral currents propagate through lower-dimensional defects, like vortices in superfluid. In case of superfluid, the prediction for the chiral magnetic effect remains unmodified although the emerging dynamical picture differs from the standard one.Comment: 35 pages, prepared for a volume of the Springer Lecture Notes in Physics "Strongly interacting matter in magnetic fields" edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Chiral vortical effect generated by chiral anomaly in vortex-skyrmions

    Full text link
    We discuss the type of the general macroscopic parity-violating effects, when there is the current along the vortex, which is concentrated in the vortex core. We consider vortices in superfluids, which contain the Weyl points. In the vortex core the positions of the Weyl points form the skyrmion structure. We show that the mass current concentrated in such a core is provided by the spectral flow through the Weyl points according to the Adler-Bell-Jackiw equation for chiral anomaly.Comment: 5 pages, 2 figures, version accepted in JETP Letter

    Triangle anomaly in Weyl semi-metals

    Get PDF
    Weyl semimetals possess massless chiral quasi-particles, and are thus affected by the triangle anomalies. We discuss the features of the chiral magnetic and chiral vortical effects specific to Weyl semimetals, and then propose three novel phenomena caused by the triangle anomalies in this material: 1) anomaly cooling; 2) charge transport by soliton waves as described by the Burgers' equation, and 3) the shift of the BKT phase transition of superfluid vortices coupled to Weyl fermions. In addition, we establish the conditions under which the chiral magnetic current exists in real materials.Comment: v3. Improved figures, minor changes in the text, 24 pages, 3 figure

    An anomalous hydrodynamics for chiral superfluid

    Full text link
    Starting from low energy effective chiral Lagrangian with gauged Wess-Zumino Witten term, we have derived a hydrodynamic theory for chiral superfluid. It is a non-abelian hydrodynamics at zero temperature with only superfluid components. With an external electromagnetic field and baryonic and axial baryonic chemical potentials turned on, we are able to identify analogs of various anomaly induced term in normal hydrodynamics, including chiral vortical effect, chiral magnetic effect and chiral electric effect. As an example, we solved the hydrodynamic equations for the ground state and observed the chiral magnetic effect and chiral separation in the confined phase.Comment: 21 page
    • …
    corecore