36 research outputs found

    Censorship Resistance as a Side-Effect

    Get PDF
    This position paper presents the following thought experiment: can we build communication protocols that (1) are sufficiently useful that they achieve widespread adoption as general-purpose communication mechanisms and (2) thwart censorship as a consequence of their design? We posit that a useful communication platform that is inherently resistant to traffic analysis, if widely adopted and used primarily for purposes not related to censorship circumvention, may be too politically and economically costly for a government to block.

    SkypeMorph: Protocol Obfuscation for Censorship Resistance

    Get PDF
    The Tor network is designed to provide users with low-latency anonymous communication. Tor clients build circuits with publicly listed relays to anonymously reach their destinations. Low-latency anonymous communication is also an essential property required by censorship circumvention tools and thus Tor has been widely used as a censorship resistance tool. However, since the Tor relays are publicly listed, they can be easily blocked by censoring adversaries. Consequently, the Tor project envisioned the possibility of unlisted entry points to the Tor network, commonly known as bridges. In recent years, there have been attempts to achieve fast and real-time methods to discover Tor, and specifically bridge, connections. In this thesis we address the issue of preventing censors from detecting a certain type of traffic, for instance Tor connections, by observing the communications between a remote node and nodes in their network. We propose a generic model in which the client obfuscates its messages to the bridge in a widely used protocol over the Internet. We investigate using Skype video calls as our target protocol and our goal is to make it difficult for the censoring adversary to distinguish between the obfuscated bridge connections and actual Skype calls using statistical comparisons. Although our method is generic and can be used by any censorship resistance application, we present it for Tor, which has well-studied anonymity properties. We have implemented our model as a proof-of-concept proxy that can be extended to a pluggable transport for Tor, and it is available under an open-source licence. Using this implementation we observed the obfuscated bridge communications and showed their characteristics match those of Skype calls. We also compared two methods for traffic shaping and concluded that they perform almost equally in terms of overhead; however, the simpler method makes fewer assumptions about the characteristics of the censorship resistance application’s network traffic, and so this is the one we recommend

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages

    Towards more Effective Censorship Resistance Systems

    Get PDF
    Internet censorship resistance systems (CRSs) have so far been designed in an ad-hoc manner. The fundamentals are unclear and the foundations are shaky. Censors are, more and more, able to take advantage of this situation. Future censorship resistance systems ought to be built from strong theoretical underpinnings and be based on empirical evidence. Our approach is based on systematizing the CRS field and its players. Informed by this systematization we develop frameworks that have broad scope, from which we gain general insight as well as answers to specific questions. We develop theoretical and simulation-based analysis tools 1) for learning how to manipulate censor behavior using game-theoretic tactics, 2) for learning about CRS-client activity levels on CRS networks, and finally 3) for evaluating security parameters in CRS designs. We learn that there are gaps in the CRS designer's arsenal: certain censor attacks go unmitigated and the dynamics of the censorship arms race are not modeled. Our game-theoretic analysis highlights how managing the base rate of CRS traffic can cause stable equilibriums where the censor allows some amount of CRS communication to occur. We design and deploy a privacy-preserving data gathering tool, and use it to collect statistics to help answer questions about the prevalence of CRS-related traffic in actual CRS communication networks. Finally, our security evaluation of a popular CRS exposes suboptimal settings, which have since been optimized according to our recommendations. All of these contributions help support the thesis that more formal and empirically driven CRS designs can have better outcomes than the current state of the art

    TOWARDS RELIABLE CIRCUMVENTION OF INTERNET CENSORSHIP

    Get PDF
    The Internet plays a crucial role in today\u27s social and political movements by facilitating the free circulation of speech, information, and ideas; democracy and human rights throughout the world critically depend on preserving and bolstering the Internet\u27s openness. Consequently, repressive regimes, totalitarian governments, and corrupt corporations regulate, monitor, and restrict the access to the Internet, which is broadly known as Internet \emph{censorship}. Most countries are improving the internet infrastructures, as a result they can implement more advanced censoring techniques. Also with the advancements in the application of machine learning techniques for network traffic analysis have enabled the more sophisticated Internet censorship. In this thesis, We take a close look at the main pillars of internet censorship, we will introduce new defense and attacks in the internet censorship literature. Internet censorship techniques investigate users’ communications and they can decide to interrupt a connection to prevent a user from communicating with a specific entity. Traffic analysis is one of the main techniques used to infer information from internet communications. One of the major challenges to traffic analysis mechanisms is scaling the techniques to today\u27s exploding volumes of network traffic, i.e., they impose high storage, communications, and computation overheads. We aim at addressing this scalability issue by introducing a new direction for traffic analysis, which we call \emph{compressive traffic analysis}. Moreover, we show that, unfortunately, traffic analysis attacks can be conducted on Anonymity systems with drastically higher accuracies than before by leveraging emerging learning mechanisms. We particularly design a system, called \deepcorr, that outperforms the state-of-the-art by significant margins in correlating network connections. \deepcorr leverages an advanced deep learning architecture to \emph{learn} a flow correlation function tailored to complex networks. Also to be able to analyze the weakness of such approaches we show that an adversary can defeat deep neural network based traffic analysis techniques by applying statistically undetectable \emph{adversarial perturbations} on the patterns of live network traffic. We also design techniques to circumvent internet censorship. Decoy routing is an emerging approach for censorship circumvention in which circumvention is implemented with help from a number of volunteer Internet autonomous systems, called decoy ASes. We propose a new architecture for decoy routing that, by design, is significantly stronger to rerouting attacks compared to \emph{all} previous designs. Unlike previous designs, our new architecture operates decoy routers only on the downstream traffic of the censored users; therefore we call it \emph{downstream-only} decoy routing. As we demonstrate through Internet-scale BGP simulations, downstream-only decoy routing offers significantly stronger resistance to rerouting attacks, which is intuitively because a (censoring) ISP has much less control on the downstream BGP routes of its traffic. Then, we propose to use game theoretic approaches to model the arms races between the censors and the censorship circumvention tools. This will allow us to analyze the effect of different parameters or censoring behaviors on the performance of censorship circumvention tools. We apply our methods on two fundamental problems in internet censorship. Finally, to bring our ideas to practice, we designed a new censorship circumvention tool called \name. \name aims at increasing the collateral damage of censorship by employing a ``mass\u27\u27 of normal Internet users, from both censored and uncensored areas, to serve as circumvention proxies
    corecore