97 research outputs found

    Application of Ultra-Wideband Technology to RFID and Wireless Sensors

    Get PDF
    Aquesta Tesi Doctoral estudia l'ús de tecnologia de ràdio banda ultraampla (UWB) per sistemes de identificació per radiofreqüència (RFID) i sensors sense fils. Les xarxes de sensors sense fils (WSNs), ciutats i llars intel•ligents, i, en general, l'Internet de les coses (IoT) requereixen interfícies de ràdio simples i de baix consum i cost per un número molt ampli de sensors disseminats. UWB en el domini temporal es proposa aquí com una tecnologia de radio habilitant per aquestes aplicacions. Un model circuital s'estudia per RFID d'UWB codificat en el temps. Es proposen lectors basats en ràdars polsats comercials amb tècniques de processat de senyal. Tags RFID sense xip (chipless) codificats en el temps son dissenyats i caracterizats en termes de número d'identificacions possible, distància màxima de lectura, polarització, influència de materials adherits, comportament angular i corbatura del tag. Es proposen sensors chipless de temperatura i composició de ciment (mitjançant detecció de permitivitat). Dos plataformes semipassives codificades en temps (amb un enllaç paral•lel de banda estreta per despertar el sensor i estalviar energia) es proposen com solucions més complexes i robustes, amb una distància de lectura major. Es dissenya un sensor de temperatura (alimentat per energia solar) i un sensor de diòxid de nitrogen (mitjançant nanotubs de carboni i alimentat per una petita bateria), ambdòs semipassius amb circuiteria analògica. Es dissenya un multi-sensor semipassiu capaç de mesurar temperatura, humitat, pressió i acceleració, fent servir un microcontrolador de baix consum digital. Combinant els tags RFID UWB codificats en temps amb tecnologia de ràdar de penetració del terra (GPR), es deriva una aplicació per localització en interiors amb terra intel•ligent. Finalment, dos sistemes actius RFID UWB codificats en el temps s'estudien per aplicacions de localització de molt llarg abast.Esta Tesis Doctoral estudia el uso de tecnología de radio de banda ultraancha (UWB) para sistemas de identificación por radiofrecuencia (RFID) y sensores inalámbricos. Las redes de sensores inalámbricas (WSNs), ciudades y casas inteligentes, y, en general, el Internet de las cosas (IoT) requieren de interfaces de radio simples y de bajo consumo y coste para un número muy amplio de sensores diseminados. UWB en el dominio temporal se propone aquí como una tecnología de radio habilitante para dichas aplicaciones. Un modelo circuital se estudia para RFID de UWB codificado en tiempo. Configuraciones de lector, basadas en rádar pulsados comerciales, son propuestas, además de técnicas de procesado de señal. Tags RFID sin chip (chipless) codificados en tiempo son diseñados y caracterizados en términos de número de identificaciones posible, distancia máxima de lectura, polarización, influencia de materiales adheridos, comportamiento angular y curvatura del tag. Se proponen sensores chipless de temperatura y composición de cemento (mediante detección de permitividad). Dos plataformas semipasivas codificadas en tiempo (con un enlace paralelo de banda estrecha para despertar el sensor y ahorrar energía) se proponen como soluciones más complejas y robustas, con una distancia de lectura mayor. Se diseña un sensor de temperatura (alimentado por energía solar) y un sensor de dióxido de nitrógeno (mediante nanotubos de carbono y alimentado por una batería pequeña), ambos semipasivos con circuitería analógica. Se diseña un multi-sensor semipasivo capaz de medir temperatura, humedad, presión y aceleración, usando un microcontrolador digital de bajo consumo. Combinando los tags RFID UWB codificados en tiempo y tecnología de radar de penetración de suelo (GPR), se deriva una aplicación para localización en interiores con suelo inteligente. Finalmente, dos sistemas activos RFID UWB codificados en tiempo se estudian para aplicaciones de localización de muy largo alcance.This Doctoral Thesis studies the use of ultra-wideband (UWB) radio technology for radio-frequency identification (RFID) and wireless sensors. Wireless sensor networks (WSNs) for smart cities, smart homes and, in general, Internet of Things (IoT) applications require low-power, low-cost and simple radio interfaces for an expected very large number of scattered sensors. UWB in time domain is proposed here as an enabling radio technology. A circuit model is studied for time-coded UWB RFID. Reader setups based on commercial impulse radars are proposed, in addition to signal processing techniques. Chipless time-coded RFID tags are designed and characterized in terms of number of possible IDs, maximum reading distance, polarization, influence of attached materials, angular behaviour and bending. Chipless wireless temperature sensors and chipless concrete composition sensors (enabled by permittivity sensing) are proposed. Two semi-passive time-coded RFID sensing platforms are proposed as more complex, more robust, and longer read-range solutions. A wake-up link is used to save energy when the sensor is not being read. A semi-passive wireless temperature sensor (powered by solar energy) and a wireless nitrogen dioxide sensor (enabled with carbon nanotubes and powered by a small battery) are developed, using analog circuitry. A semi-passive multi-sensor tag capable of measuring temperature, humidity, pressure and acceleration is proposed, using a digital low-power microcontroller. Combining time-coded UWB RFID tags and ground penetrating radar, a smart floor application for indoor localization is derived. Finally, as another approach, two active time-coded RFID systems are developed for very long-range applications

    Structural Health Monitoring from Sensing to Processing

    Get PDF
    Providing the best availability of aircrafts is a key driver in aeronautics industry. Monitoring system able to detect signs of failure before they happen, thanks to sensors and diagnosis/prognosis algorithms, is key for improving aircraft operability. Since a suspension system is connecting the engine to the aircraft, after hard landing, aircraft companies need to know if the suspension system is safe or could have been damaged. This chapter presents an autonomous wireless load sensing recorder development that will enable maintenance operators to make a relevant diagnosis of the suspension system by measuring the load level seen after a hard landing by connecting a portable device near the embedded sensor system. The sensor integrates energy harvesting and RFID communication modules that have been developed for this application. Data acquisition is performed by an embedded microcontroller connected to sensors. The paper is firstly dedicated to the different energy sources available in the project application (engine pods). The second part gives a presentation of the various devices developed for converting ambient energy into electric power and SHM system. The last part presents real measurement of ambient energy level from real tests in comparison to the energy needed to power the system

    Antenna sensing for wearable applications

    Get PDF
    As wearable technologies are growing fast, there is emerging trend to increase functionality of the devices. Antennas which are primarily component in communication systems can offer attractive route forward to minimize the number of components functioning as a sensing element for wearable and flexible electronics. Toward development of flexible antenna as sensing element, this thesis investigates the development of the flexible and printed sensing NFC RFID tag. In this approach, the sensor measurement is supported by the internal sensor and analog-to-digital convertor (ADC) of the NFC transponder. Design optimisation, fabrication and characterization of the printed antenna are described. Besides, the printed antenna, NFC transponder and two simple resistive sensors are integrated to form a fully flexible sensing RFID tag demonstrating applicability in food and health monitoring. This thesis also presents development of two antenna sensors by using functional materials: (i) An inductor-capacitor (LC) resonant tank based wireless pressure sensor on electrospun Poly-L-lactide (PLLA) nanofibers-based substrate. The screen-printed resonant tank (resonant frequency of ~13.56 MHz) consists of a planar inductor connected in parallel with an interdigitated capacitor. Since the substrates is piezoelectric, the capacitance of the interdigitated capacitor varies in response to the applied pressure. To demonstrate a potential application of developed pressure sensor, it was integrated on a compression bandage to monitor sub-bandage pressure. (ii) To investigate the realization of sensing antenna as temperature sensor simple loop antenna is designed and in this study unlike the first study that the sensing element was the substrate, the conductive body of the antenna itself is considered as a functional material. In this case, a small part of a loop antenna which originally was printed using silver paste is replaced by Poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT: PSS). The sensing mechanism is based on the resonant frequency shift by varying temperature. While using functional materials is useful for realization of antenna sensor, another approach also is presented by developing stretchable textile-based microstrip antennas on deformable substrate which can measure joint angles of a human limb. The EM characteristics of the meshed patch antenna were compared with its metallic counterpart fabricated with lithography technique. Moreover, the concept of stretchable UHF RFID-based strain sensor is touched in the final part of this thesis

    Contactless Energy Transfer Techniques for Industrial Applications. Power and Data Transfer to Moving Parts

    Get PDF
    Contactless energy transfer (CET) systems are gaining increasing interest in the automatic machinery industries. For this reason, circuit equivalent networks of CET systems considered in the literature are introduced with emphasis on their industrial applicability. The main operating principles and the required compensating networks, along with different topologies of power supplies optimised for wireless powering, are discussed. The analysis of the wireless transfer, at the maximum efficiency, of high power levels shows that, in the kHz range, highly coupled inductive links are needed and soft-switching power sources required. The employment of CET units in controlled systems requires combining a link for data communication with the wireless power channel. At low frequencies, capacitive and inductive couplings are integrated in a unique platform to implement the wireless data and power links, respectively. Differently, at UHF, an increased data channel transfer efficiency is made possible by exploiting auto-resonant structures, such as split-ring resonators instead of capacitances, one at each far-end side of the link. The design procedure of a power CET system, including the dc/ac converter, a rotary transformer and its windings, is discussed and the results presented. A different version of a WPT system, which involves multiple transmitting coils and a sliding receiver, is also presented. A low frequency RFID capacitive data link is then combined with the rotary CET unit to provide the temperature feedback of a controlled system, wherein the rectifying part of a passive tag is exploited to simultaneously power and read a temperature probe. Subsequently, a split-ring based near-field UHF data link is designed to ensure an improved temperature detection in terms of accuracy and resolution. The sensor readout is performed at the transmitter side by measuring the reflected power by the load rectifier

    Development of sensors and non-destructive techniques to determine the performance of coatings in construction

    Get PDF
    The primary objective of this work was to examine and develop techniques for monitoring the degradation of Organically Coated Steel (OCS) in-situ. This included the detection of changes associated with the weathering to both the organic coating and metallic substrate. Initially, a review of current promising techniques was carried out however many were found to be unsuitable for this application and the adaptation of current techniques and the development of new techniques was considered. A brief concept investigation, based on initial testing and considerations, was used to determine a number of sensing techniques to examine. These included embedded, Resonant Frequency Identification (RFID), Magnetic Flux Leakage (MFL) and dielectric sensing. Each of these techniques were assessed for the application, prototyped, and tested against a range of samples to determine the accuracy and sensitivity of degradation detection provided. A range of poorly and highly durable coated samples were used in conjunction with accelerated weathering testing for this aim. Track based electronic printed sensors were presented as both a cut edge corrosion tracking and coating capacitance measurement method. While suffering somewhat from electrical paint compatibility issues both concepts showed merit in initial trials however the capacitive sensor ultimately proved insufficiently responsive to coating changes. The embedded, progressive failure-based, cut edge corrosion sensor was produced and tested in modern coating systems with moderate success. Novel applications of RFID and MLF techniques were considered and proved capable of detecting large changes in substrate condition due to significant corrosion. However, there was a lack of sufficient sensitivity when considering early-stage corrosion of durable modern OCS products. Finally, it was shown that a chipless antenna could be designed and optimised for novelly monitoring the changes to the dielectric properties of a paint layer due to degradation. However, ultimately this test, due to equipment requirements, lent itself more to lab testing than in-situ. Due to some of these limitations a different approach was considered in which the environmental factors influencing degradation were examined with the aim of relating these to performance across a building. It was observed that a combination of high humidity and the build-up of aggressive natural deposits contributed to high degradation rates in sheltered regions, such as building eaves, where microclimates were created. The build-up of deposits and their effect was presented as a key degradation accelerant during in-use service. A unique numerical simulation approach was developed to predict the natural washing, via rain impact and characteristics of the building analysed. This approach showed promise for determining areas unlikely to be naturally washed, and therefore subjected to a degradation accelerating, build-up of deposits. Given these understandings coated wetness sensors were considered as a realistic live-monitoring device capable of determining deposit build up and ultimately OCS lifetime

    Low-cost electromagnetic tagging : design and implementation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (p. 220-222).Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic tagging is presented, including both chip-based and chipless technologies with associated costs. As a candidate for low-cost ID tags, a design theory and implementation is presented for multiply-resonant planar metal structures. This theory includes a circuit model, a phenomenological model, and a framework for predicting the resonant frequencies as a function of geometrical and material properties. A novel physical geometry, a tree-like spiral structure, is proposed as a design that increases the number of resonances per unit area in a planar structure relative to the present day state-of-the-art. In addition to identification, it is shown how several chipless tags can also be designed to function as sensors. Several examples are discussed in detail, including: 1) a family of thermal sensor tags employing magnetic materials and 2) a family of sensor tags (to sense pressure, humidity, and pH) based on planar resonator structures. The latter section of the dissertation describes the evolution of my work in developing the necessary (and low-cost) instrumentation to support these new varieties of tag technologies, ranging from a 500frequencyagilereadertoa500 frequency-agile reader to a 5 reader for toy applications.by Richard Ribon Fletcher.Ph.D

    Recent Advances in Printed Capacitive Sensors

    Get PDF
    In this review paper, we summarize the latest advances in the field of capacitive sensors fabricated by printing techniques. We first explain the main technologies used in printed electronics, pointing out their features and uses, and discuss their advantages and drawbacks. Then, we review the main types of capacitive sensors manufactured with different materials and techniques from physical to chemical detection, detailing the main substrates and additives utilized, as well as the measured ranges. The paper concludes with a short notice on status and perspectives in the field.H2020-MSCA-IF-2017-794885-SELFSEN

    Development of a chipless RFID based aerospace structural health monitoring sensor system

    Get PDF
    Chipless Radio Frequency Identification (RFID) is modern wireless technology that has been earmarked as being suitable for low-cost item tagging/tracking. These devices do not require integrated circuitry or a battery and thus, are not only are cheap, but also easy to manufacture and potentially very robust. A great deal of attention is also being put on the possibility of giving these tags the ability to sense various environmental stimuli such as temperature and humidity. This work focusses on the potential use of chipless RFID as a sensor technology for aerospace Structural Health Monitoring. The project is focussed on the sensing of mechanical strain and temperature, with an emphasis placed on fabrication simplicity, so that the final sensor designs could be potentially fabricated in-situ using existing printing technologies. Within this project, a variety of novel chipless RFID strain and temperature sensors have been designed, fabricated and tested. A thorough discussion is also presented on the topic of strain sensor cross sensitivity, which places emphasis on issues like, transverse strain, dielectric constant variations and thermal swelling. Additionally, an exploration into other key technological challenges was also performed, with a focus on challenges such as: accurate and reliable stimulus detection, sensor polarization and multi-sensor support. Several key areas of future research have also been identified and outlined, with aims related to: Enhancing strain sensor fabrication simplicity, enhancing temperature sensor sensitivity and simplicity and developing a fully functional interrogation system

    Advanced Radio Frequency Identification Design and Applications

    Get PDF
    Radio Frequency Identification (RFID) is a modern wireless data transmission and reception technique for applications including automatic identification, asset tracking and security surveillance. This book focuses on the advances in RFID tag antenna and ASIC design, novel chipless RFID tag design, security protocol enhancements along with some novel applications of RFID
    corecore