250 research outputs found

    Double-stub loaded microstrip line reader for very high data density microwave encoders

    Get PDF
    Compact and high-data density microwave encoders useful for motion control and near-field chipless radio frequency identification (chipless-RFID) applications are proposed in this paper. The encoders are chains of metallic strips etched on a dielectric substrate. The reader consists of a microstrip line loaded with a pair of identical open-ended folded stubs located at different positions and oriented face-to-face by their extremes. By displacing the encoder over the extremes of the stubs, interstub coupling arises when a strip is located on top of the stubs, thereby generating two transmission zeros (rather than one) in the frequency response of the line. Thus, the presence of a strip on top of the face-to-face stubs produces a variation in the transmission coefficient of the line, which in turn can be detected by feeding the line with a harmonic signal, conveniently tuned. Encoder motion generates an amplitude modulated (AM) signal at the output port of the line with peaks, or dips, separated by a time distance dictated by the relative velocity between the reader and the encoder. Moreover, by making certain strips of the chain inoperative (e.g., by cutting them), it is possible to encode information that can be read as the absence (logic state "1") or presence (logic state "0") of peaks, or dips, at predefined positions in the output AM signal of the reader line. Since short strips suffice to generate interstub coupling, unprecedented data density per surface (DPS = 26.04 bit/cm 2 ) is obtained, as revealed by the implementation of 6.4 mm × 60 mm 100-bit encoder

    A novel chipless RFID system based on planar multiresonators for barcode replacement

    Get PDF
    RFID is taking the world by storm but lowering the price of the tag is a necessity in order to completely replace barcode systems with RFID systems. Researchers around the world have been working on chipless RFID systems. In this paper we present a novel chipless RFID system for barcode replacement. The system can be effectively used in conveyor belt applications. It uses spectral signatures to encoded data and hence provide a unique ID for every tagged object. The chipless tag is fully passive and planar
    • …
    corecore