2,517 research outputs found

    Effects of Humidity on the Electro-Optical-Thermal Characteristics of High-Power LEDs

    Get PDF
    LEDs are subjected to environments with high moisture in many applications. In this paper, the experiments reveal photometric and colorimetric degradation at high humidity. Corresponding spectral power analysis and parameter extraction indicate that the flip-chip bonded LED samples show accelerated chip failure compared to the conventionally bonded samples. The chip-related failure induces greater heat accumulation, which correlates with the increase in heating power observed in the package. However, the temperature rise and thermal resistance for the flip-chip bonded LEDs do not increase substantially as compared to the conventionally bonded LEDs. This is because the junction temperature can be reduced with a flip-chip die-bonding configuration where the heat generated in the LED chip is dissipated effectively onto the AlN substrate, thereby reducing the increase in temperature rise and thermal resistance. The experimental results are supported by evaluation of the derivative structure functions. In addition, as the thermal resistance of the LED package varies with different humidity levels, there is a need to specify the conditions of humidity in data sheets as LED manufacturers routinely specify a universal thermal resistance value under a fixed operating condition

    A practical degradation based method to predict long-term moisture incursion and colour change in high power LEDs

    Get PDF
    The effect of relative humidity on LEDs and how the moisture incursion is associated to the color shift is studied. This paper proposes a different approach to describe the lumen degradation of LEDs due to the long-term effects of humidity. Using the lumen degradation data of different types of LEDs under varying conditions of relative humidity, a humidity based degradation model (HBDM) is developed. A practical estimation method from the degradation behaviour is proposed to quantitatively gauge the effect of moisture incursion by means of a humidity index. This index demonstrates a high correlation with the color shift indicated by the LED's yellow to blue output intensity ratio. Physical analyses of the LEDs provide a qualitative validation of the model, which provides good accuracy with longer periods of moisture exposure. The results demonstrate that the HBDM is an effective indicator to predict the extent of the long-term impact of humidity and associated relative color shift

    An application of Dijkstra’s algorithm model in finding shortest travel time in KLCC

    Get PDF
    Nowadays, traffic congestion or also known as traffic jammed is one of the common routing problems that usually occur on road networks. Routing problems becomes one of the big concern that most of the develop country must face including Malaysia

    DESIGN AND RELIABILITY ASSESSMENT OF HIGH POWER LED AND LED-BASED SOLID STATE LIGHTING

    Get PDF
    Lumen depreciation and color quality change of high power LED-based solid state light (SSL) are caused by the combination of various degradation mechanisms. The analytical/experimental models on the system as well as component-level are proposed to analyze the complex reliability issues of the LED-based solid SSL. On the system-level front, a systematic approach to define optimum design domains of LED-based SSL for a given light output requirement is developed first by taking cost, energy consumption and reliability into consideration. Three required data sets (lumen/LED, luminaire efficacy, and L70 lifetime) to define design domains are expressed as contour maps in terms of two most critical operating parameters: the forward current and the junction temperature (If and Tj). Then, the available domain of design solutions is defined as a common area that satisfies all the requirements of a luminaire. Secondly, a physic of failure (PoF) based hierarchical model is proposed to estimate the lifetime of the LED-based SSL. The model is implemented successfully for an LED-based SSL cooled by a synthetic jet, where the lifetime of a prototypical luminaire is predicted from LED lifetime data using the degradation analyses of the synthetic jet and the power electronics. On the component-level front, a mathematical model and an experimental procedure are developed to analyze the degradation mechanisms of high power LEDs. In the approach, the change in the spectral power distribution (SPD) caused by the LED degradation is decomposed into the contributions of individual degradation mechanisms so that the effect of each degradation mechanism on the final LED degradation is quantified. It is accomplished by precise deconvolution of the SPD into the leaked blue light and the phosphor converted light. The model is implemented using the SPDs of a warm white LED with conformally-coated phosphor, obtained before and after 9,000 hours of operation. The analysis quantifies the effect of each degradation mechanism on the final values of lumen, CCT and CRI

    RELIABILITY TESTING & BAYESIAN MODELING OF HIGH POWER LEDS FOR USE IN A MEDICAL DIAGNOSTIC APPLICATION

    Get PDF
    While use of LEDs in fiber optics and lighting applications is common, their use in medical diagnostic applications is rare. Since the precise value of light intensity is used to interpret patient results, understanding failure modes is very important. The contributions of this thesis is that it represents the first measurements of reliability of AlGaInP LEDs for the medical environment of short pulse bursts and hence the uncovering of unique failure mechanisms. Through accelerated life tests (ALT), the reliability degradation model has been developed and other LED failure modes have been compared through a failure modes and effects criticality analysis (FMECA). Appropriate ALTs and accelerated degradation tests (ADT) were designed and carried out for commercially available AlGaInP LEDs. The bias conditions were current pulse magnitude and duration, current density and temperature. The data was fitted to both an Inverse Power Law model with current density J as the accelerating agent and also to an Arrhenius model with T as the accelerating agent. The optical degradation during ALT/ADT was found to be logarithmic with time at each test temperature. Further, the LED bandgap temporarily shifts towards the longer wavelength at high current and high junction temperature. Empirical coefficients for Varshini's equation were determined, and are now available for future reliability tests of LEDs for medical applications. In order to incorporate prior knowledge, the Bayesian analysis was carried out for LEDs. This consisted of identifying pertinent prior data and combining the experimental ALT results into a Weibull probability model for time to failure determination. The Weibull based Bayesian likelihood function was derived. For the 1st Bayesian updating, a uniform distribution function was used as the Prior for Weibull á-â parameters. Prior published data was used as evidence to get the 1st posterior joint á-â distribution. For the 2nd Bayesian updating, ALT data was used as evidence to obtain the 2nd posterior joint á-â distribution. The predictive posterior failure distribution was estimated by averaging over the range of á-â values. This research provides a unique contribution in reliability degradation model development based on physics of failure by modeling the LED output characterization (logarithmic degradation, TTF â<1), temperature dependence and a degree of Relevance parameter `R' in the Bayesian analysis

    analysis and reliability study of luminescent materials for white lighting

    Get PDF
    In this work, we report on the characterization and reliability/stability study of phosphorescent materials for lighting applications. More specifically, we investigated (a) phosphors directly deposited over light-emitting diodes (LED) chip, (b) remote phosphor (RP) solutions encapsulated in plastic medium for LED lighting, and (c) phosphors without binder for extreme high-intensity laser diode white lighting. The optical and thermal properties of phosphors were studied to develop a sample based on a mix of phosphor compounds in order to achieve different correlated color temperatures (CCT) and high color rendering index (CRI) LEDs. Thermal properties of cerium-doped YAG (Yttrium Aluminum Garnet) phosphor materials were evaluated in order to study thermal quenching. A maximum phosphor operating temperature of 190–200 °C was found to cause a sensible efficiency degeneration. Reduced efficiency and Stokes shift also caused a localized temperature increase in the photoluminescent materials. In the case of remote phosphors, heat did not find a low thermal resistance path to the heatsink (as occurred through the GaN LED chip for direct phosphor-converted devices) and thermal analysis indicated that material temperature might therefore increase to values in excess of 60 °C when a radiation of 435 mW/cm2 hit the sample template. Reliability was also investigated for both plastic-encapsulated materials and binder-free depositions. Pure thermal reliability study indicated that phosphors encapsulated in polycarbonate material were stable up to temperature of approximately 100 °C, while binder-free phosphor did not show any sensible degradation up to temperatures of 525 °C

    Study of the reliability of power LEDs for color mixing applications

    Get PDF
    The aim of this thesis is the reliability analysis of high-power RGB and white LEDs\nprovided by six different manufacturers. In order to evaluate the characteristics of these devices in terms of lifetime and optical power maintenance combined thermal and current stress tests have been carried out, verifying the changes of the optical and electrical characteristics of the devices during\nthe stress. The results of this work have revealed several types of degradation of various\ndevices

    A model to design light emitting diodes matrix driven by constant current source

    Get PDF
    It is always desirable to operate LEDs within its designed maximum temperature for maximized life. For LEDs driven by a constant current source it is possible to improve LED life by putting more LEDs in parallel to share current and reduce temperature, but the cost would increase. This paper proposes a general LED model to estimate the relationship between temperature, operating current, luminous flux, life and reliability of light emitting diodes. This model can direct LED matrix design with respect to the required parameters. The model would help lighting designers to consider the driving current and number of LED in a lamp matrix in order to achieve the desired light flux, efficacy and life with desired cost. A method involved power electronic technique is proposed to form a dynamic matrix that can response to the changing ambient temperature. This allows the engineer to build the real desired matrix flexibly.published_or_final_versio

    COLOR AND SPECTRAL CHARACTERISTICS OF WHITE LIGHT EMITTING DIODES AND THEIR VARIATION DURING AGING

    Get PDF
    The relation between numerical values of photometric characteristics (total luminous flux TLF, correlated color temperature CCT, color rendering index CRI) of white light emitting diodes (LED) and the variation of the spectral shape of their radiation during aging has been investigated. All the measurements were made on internationally adopted test methods, taking into account environmental conditions, electrical parameters and evaluated measurement uncertainty. Every piece of test and measurement equipment has actual verification or calibration with traceability to national and international references. It was demonstrated that in the luminescence spectra consisting of the “blue” band around 450 nm originating from the semiconductor heterostructure, and the broad “yellow” band from luminophor, the last band is nonelementary and consists of at least two bands: the “green” one around 530 nm and the “orange” one around 580 nm. The most unstable “green” band has the highest impact on photometric characteristics. As a consequence, further investigation should be performed on how instability of elementary bands and its quantity will link not only with photometric characteristics, but with production conditions and material properties of LED heterostructure and luminophor itself. In particular, for improvement of the color stability of white LED, the parameters of luminophor forming the “green” band should be stabilized. А unified method for accelerated testing of LED products and method for long-time lifetime prediction shall be developed, taking into account not only depreciation of TLF, but also shift of other photometric and spectral characteristics of white LED.The relation between numerical values of photometric characteristics (total luminous flux TLF, correlated color temperature CCT, color rendering index CRI) of white light emitting diodes (LED) and the variation of the spectral shape of their radiation during aging has been investigated. All the measurements were made on internationally adopted test methods, taking into account environmental conditions, electrical parameters and evaluated measurement uncertainty. Every piece of test and measurement equipment has actual verification or calibration with traceability to national and international references. It was demonstrated that in the luminescence spectra consisting of the “blue” band around 450 nm originating from the semiconductor heterostructure, and the broad “yellow” band from luminophor, the last band is nonelementary and consists of at least two bands: the “green” one around 530 nm and the “orange” one around 580 nm. The most unstable “green” band has the highest impact on photometric characteristics. As a consequence, further investigation should be performed on how instability of elementary bands and its quantity will link not only with photometric characteristics, but with production conditions and material properties of LED heterostructure and luminophor itself. In particular, for improvement of the color stability of white LED, the parameters of luminophor forming the “green” band should be stabilized. А unified method for accelerated testing of LED products and method for long-time lifetime prediction shall be developed, taking into account not only depreciation of TLF, but also shift of other photometric and spectral characteristics of white LED
    corecore