3,051 research outputs found

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    A Review of Bayesian Methods in Electronic Design Automation

    Full text link
    The utilization of Bayesian methods has been widely acknowledged as a viable solution for tackling various challenges in electronic integrated circuit (IC) design under stochastic process variation, including circuit performance modeling, yield/failure rate estimation, and circuit optimization. As the post-Moore era brings about new technologies (such as silicon photonics and quantum circuits), many of the associated issues there are similar to those encountered in electronic IC design and can be addressed using Bayesian methods. Motivated by this observation, we present a comprehensive review of Bayesian methods in electronic design automation (EDA). By doing so, we hope to equip researchers and designers with the ability to apply Bayesian methods in solving stochastic problems in electronic circuits and beyond.Comment: 24 pages, a draft version. We welcome comments and feedback, which can be sent to [email protected]

    Fabrication and characterization of shape memory polymers at small scales

    Get PDF
    The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory poly- mers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) study spin coating conditions on thin film quality with designed experiments. (iv) apply neural networks and genetic algorithms to optimize these systems.Ph.D.Committee Chair: Gall, Ken; Committee Chair: May, Gary S; Committee Member: Brand, Oliver; Committee Member: Degertekin, F Levent; Committee Member: Milor, Linda

    Virtual metrology for semiconductor manufacturing applications

    Get PDF
    Per essere competitive nel mercato, le industrie di semiconduttori devono poter raggiungere elevati standard di produzione a un prezzo ragionevole. Per motivi legati tanto ai costi quanto ai tempi di esecuzione, una strategia di controllo della qualità che preveda la misurazione completa del prodotto non è attuabile; i test sono eettuati su un ristretto campione dei dati originali. Il traguardo del presente lavoro di Tesi è lo studio e l'implementazione, attraverso metodologie di modellistica tipo non lineare, di un algoritmo di metrologia virtuale (Virtual Metrology) d'ausilio al controllo di processo nella produzione di semiconduttori. Infatti, la conoscenza di una stima delle misure non realmente eseguite (misure virtuali) può rappresentare un primo passo verso la costruzione di sistemi di controllo di processo e controllo della qualità sempre più ranati ed ecienti. Da un punto di vista operativo, l'obiettivo è fornire la più accurata stima possibile delle dimensioni critiche a monte della fase di etching, a partire dai dati disponibili (includendo misurazioni da fasi di litograa e deposizione e dati di processo - ove disponibili). Le tecniche statistiche allo stato dell'arte analizzate in questo lavoro comprendono: - multilayer feedforward networks; Confronto e validazione degli algoritmi presi in esame sono stati possibili grazie ai data-set forniti da un'industria manifatturiera di semiconduttori. In conclusione, questo lavoro di Tesi rappresenta un primo passo verso la creazione di un sistema di controllo di processo e controllo della qualità evoluto e essibile, che abbia il ne ultimo di migliorare la qualità della produzione.ope

    A review of data mining applications in semiconductor manufacturing

    Get PDF
    The authors acknowledge Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) for its financial support via the project UIDB/00667/2020 (UNIDEMI).For decades, industrial companies have been collecting and storing high amounts of data with the aim of better controlling and managing their processes. However, this vast amount of information and hidden knowledge implicit in all of this data could be utilized more efficiently. With the help of data mining techniques unknown relationships can be systematically discovered. The production of semiconductors is a highly complex process, which entails several subprocesses that employ a diverse array of equipment. The size of the semiconductors signifies a high number of units can be produced, which require huge amounts of data in order to be able to control and improve the semiconductor manufacturing process. Therefore, in this paper a structured review is made through a sample of 137 papers of the published articles in the scientific community regarding data mining applications in semiconductor manufacturing. A detailed bibliometric analysis is also made. All data mining applications are classified in function of the application area. The results are then analyzed and conclusions are drawn.publishersversionpublishe

    Review of Health Prognostics and Condition Monitoring of Electronic Components

    Get PDF
    To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis techniques play an essential role. It is vital to find flaws at an early stage in design, components, material, or manufacturing during the initial phase. This review paper attempts to summarize past development and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL) prediction, and like. The current state of the art in reliability research for electronic components, mainly includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies' vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and the central research gap is highlighted

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Modeling of epoxy dispensing process using a hybrid fuzzy regression approach

    Get PDF
    In the semiconductor manufacturing industry, epoxy dispensing is a popular process commonly used in die bonding as well as in microchip encapsulation for electronic packaging. Modeling the epoxy dispensing process is important because it enables us to understand the process behavior, as well as determine the optimum operating conditions of the process for a high yield, low cost, and robust operation. Previous studies of epoxy dispensing have mainly focused on the development of analytical models. However, an analytical model for epoxy dispensing is difficult to develop because of its complex behavior and high degree of uncertainty associated with the process in a real-world environment. Previous studies of modeling the epoxy dispensing process have not addressed the development of explicit models involving high-order and interaction terms, as well as fuzziness between process parameters. In this paper, a hybrid fuzzy regression (HFR) method integrating fuzzy regression with genetic programming is proposed to make up the deficiency. Two process models are generated for the two quality characteristics of the process, encapsulation weight and encapsulation thickness based on the HFR, respectively. Validation tests are performed. The performance of the models developed based on the HFR outperforms the performance of those based on statistical regression and fuzzy regression

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included
    corecore