7,465 research outputs found

    Exploiting shared Chinese characters in Chinese word segmentation optimization for Chinese-Japanese machine translation

    Get PDF
    Abstract Unknown words and word segmentation granularity are two main problems in Chinese word segmentation for ChineseJapanese Machine Translation (MT). In this paper, we propose an approach of exploiting common Chinese characters shared between Chinese and Japanese in Chinese word segmentation optimization for MT aiming to solve these problems. We augment the system dictionary of a Chinese segmenter by extracting Chinese lexicons from a parallel training corpus. In addition, we adjust the granularity of the training data for the Chinese segmenter to that of Japanese. Experimental results of Chinese-Japanese MT on a phrase-based SMT system show that our approach improves MT performance significantly

    Learning Character-level Compositionality with Visual Features

    Full text link
    Previous work has modeled the compositionality of words by creating character-level models of meaning, reducing problems of sparsity for rare words. However, in many writing systems compositionality has an effect even on the character-level: the meaning of a character is derived by the sum of its parts. In this paper, we model this effect by creating embeddings for characters based on their visual characteristics, creating an image for the character and running it through a convolutional neural network to produce a visual character embedding. Experiments on a text classification task demonstrate that such model allows for better processing of instances with rare characters in languages such as Chinese, Japanese, and Korean. Additionally, qualitative analyses demonstrate that our proposed model learns to focus on the parts of characters that carry semantic content, resulting in embeddings that are coherent in visual space.Comment: Accepted to ACL 201

    Korean-to-Chinese Machine Translation using Chinese Character as Pivot Clue

    Full text link
    Korean-Chinese is a low resource language pair, but Korean and Chinese have a lot in common in terms of vocabulary. Sino-Korean words, which can be converted into corresponding Chinese characters, account for more than fifty of the entire Korean vocabulary. Motivated by this, we propose a simple linguistically motivated solution to improve the performance of the Korean-to-Chinese neural machine translation model by using their common vocabulary. We adopt Chinese characters as a translation pivot by converting Sino-Korean words in Korean sentences to Chinese characters and then train the machine translation model with the converted Korean sentences as source sentences. The experimental results on Korean-to-Chinese translation demonstrate that the models with the proposed method improve translation quality up to 1.5 BLEU points in comparison to the baseline models.Comment: 9 page

    Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

    Get PDF
    Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps using a sliding window-based method, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MCFCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.10% and 97.15%, respectively, which are significantly better than the best result reported thus far in the literature.Comment: 14 pages, 9 figure

    Korean-to-Chinese Machine Translation using Chinese Character as Pivot Clue

    Get PDF

    Exploiting Parallel Corpus for Handling Out-of-vocabulary Words

    Get PDF
    • …
    corecore