5,221 research outputs found

    Parsing Thai Social Data: A New Challenge for Thai NLP

    Full text link
    Dependency parsing (DP) is a task that analyzes text for syntactic structure and relationship between words. DP is widely used to improve natural language processing (NLP) applications in many languages such as English. Previous works on DP are generally applicable to formally written languages. However, they do not apply to informal languages such as the ones used in social networks. Therefore, DP has to be researched and explored with such social network data. In this paper, we explore and identify a DP model that is suitable for Thai social network data. After that, we will identify the appropriate linguistic unit as an input. The result showed that, the transition based model called, improve Elkared dependency parser outperform the others at UAS of 81.42%.Comment: 7 Pages, 8 figures, to be published in The 14th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2019

    Growing Story Forest Online from Massive Breaking News

    Full text link
    We describe our experience of implementing a news content organization system at Tencent that discovers events from vast streams of breaking news and evolves news story structures in an online fashion. Our real-world system has distinct requirements in contrast to previous studies on topic detection and tracking (TDT) and event timeline or graph generation, in that we 1) need to accurately and quickly extract distinguishable events from massive streams of long text documents that cover diverse topics and contain highly redundant information, and 2) must develop the structures of event stories in an online manner, without repeatedly restructuring previously formed stories, in order to guarantee a consistent user viewing experience. In solving these challenges, we propose Story Forest, a set of online schemes that automatically clusters streaming documents into events, while connecting related events in growing trees to tell evolving stories. We conducted extensive evaluation based on 60 GB of real-world Chinese news data, although our ideas are not language-dependent and can easily be extended to other languages, through detailed pilot user experience studies. The results demonstrate the superior capability of Story Forest to accurately identify events and organize news text into a logical structure that is appealing to human readers, compared to multiple existing algorithm frameworks.Comment: Accepted by CIKM 2017, 9 page

    DancingLines: An Analytical Scheme to Depict Cross-Platform Event Popularity

    Full text link
    Nowadays, events usually burst and are propagated online through multiple modern media like social networks and search engines. There exists various research discussing the event dissemination trends on individual medium, while few studies focus on event popularity analysis from a cross-platform perspective. Challenges come from the vast diversity of events and media, limited access to aligned datasets across different media and a great deal of noise in the datasets. In this paper, we design DancingLines, an innovative scheme that captures and quantitatively analyzes event popularity between pairwise text media. It contains two models: TF-SW, a semantic-aware popularity quantification model, based on an integrated weight coefficient leveraging Word2Vec and TextRank; and wDTW-CD, a pairwise event popularity time series alignment model matching different event phases adapted from Dynamic Time Warping. We also propose three metrics to interpret event popularity trends between pairwise social platforms. Experimental results on eighteen real-world event datasets from an influential social network and a popular search engine validate the effectiveness and applicability of our scheme. DancingLines is demonstrated to possess broad application potentials for discovering the knowledge of various aspects related to events and different media

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    What Makes it Difficult to Understand a Scientific Literature?

    Full text link
    In the artificial intelligence area, one of the ultimate goals is to make computers understand human language and offer assistance. In order to achieve this ideal, researchers of computer science have put forward a lot of models and algorithms attempting at enabling the machine to analyze and process human natural language on different levels of semantics. Although recent progress in this field offers much hope, we still have to ask whether current research can provide assistance that people really desire in reading and comprehension. To this end, we conducted a reading comprehension test on two scientific papers which are written in different styles. We use the semantic link models to analyze the understanding obstacles that people will face in the process of reading and figure out what makes it difficult for human to understand a scientific literature. Through such analysis, we summarized some characteristics and problems which are reflected by people with different levels of knowledge on the comprehension of difficult science and technology literature, which can be modeled in semantic link network. We believe that these characteristics and problems will help us re-examine the existing machine models and are helpful in the designing of new one.Comment: Accepted by SKG201
    corecore