552 research outputs found

    Exploiting Contextual Information for Prosodic Event Detection Using Auto-Context

    Get PDF
    Prosody and prosodic boundaries carry significant information regarding linguistics and paralinguistics and are important aspects of speech. In the field of prosodic event detection, many local acoustic features have been investigated; however, contextual information has not yet been thoroughly exploited. The most difficult aspect of this lies in learning the long-distance contextual dependencies effectively and efficiently. To address this problem, we introduce the use of an algorithm called auto-context. In this algorithm, a classifier is first trained based on a set of local acoustic features, after which the generated probabilities are used along with the local features as contextual information to train new classifiers. By iteratively using updated probabilities as the contextual information, the algorithm can accurately model contextual dependencies and improve classification ability. The advantages of this method include its flexible structure and the ability of capturing contextual relationships. When using the auto-context algorithm based on support vector machine, we can improve the detection accuracy by about 3% and F-score by more than 7% on both two-way and four-way pitch accent detections in combination with the acoustic context. For boundary detection, the accuracy improvement is about 1% and the F-score improvement reaches 12%. The new algorithm outperforms conditional random fields, especially on boundary detection in terms of F-score. It also outperforms an n-gram language model on the task of pitch accent detection

    Improving Mandarin Prosodic Structure Prediction with Multi-level Contextual Information

    Full text link
    For text-to-speech (TTS) synthesis, prosodic structure prediction (PSP) plays an important role in producing natural and intelligible speech. Although inter-utterance linguistic information can influence the speech interpretation of the target utterance, previous works on PSP mainly focus on utilizing intrautterance linguistic information of the current utterance only. This work proposes to use inter-utterance linguistic information to improve the performance of PSP. Multi-level contextual information, which includes both inter-utterance and intrautterance linguistic information, is extracted by a hierarchical encoder from character level, utterance level and discourse level of the input text. Then a multi-task learning (MTL) decoder predicts prosodic boundaries from multi-level contextual information. Objective evaluation results on two datasets show that our method achieves better F1 scores in predicting prosodic word (PW), prosodic phrase (PPH) and intonational phrase (IPH). It demonstrates the effectiveness of using multi-level contextual information for PSP. Subjective preference tests also indicate the naturalness of synthesized speeches are improved.Comment: Accepted by Interspeech202

    Advances in the neurocognition of music and language

    Get PDF

    Generation of prosody and speech for Mandarin Chinese

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Negative vaccine voices in Swedish social media

    Get PDF
    Vaccinations are one of the most significant interventions to public health, but vaccine hesitancy creates concerns for a portion of the population in many countries, including Sweden. Since discussions on vaccine hesitancy are often taken on social networking sites, data from Swedish social media are used to study and quantify the sentiment among the discussants on the vaccination-or-not topic during phases of the COVID-19 pandemic. Out of all the posts analyzed a majority showed a stronger negative sentiment, prevailing throughout the whole of the examined period, with some spikes or jumps due to the occurrence of certain vaccine-related events distinguishable in the results. Sentiment analysis can be a valuable tool to track public opinions regarding the use, efficacy, safety, and importance of vaccination
    corecore