10,097 research outputs found

    Improving Cross-Domain Chinese Word Segmentation with Word Embeddings

    Full text link
    Cross-domain Chinese Word Segmentation (CWS) remains a challenge despite recent progress in neural-based CWS. The limited amount of annotated data in the target domain has been the key obstacle to a satisfactory performance. In this paper, we propose a semi-supervised word-based approach to improving cross-domain CWS given a baseline segmenter. Particularly, our model only deploys word embeddings trained on raw text in the target domain, discarding complex hand-crafted features and domain-specific dictionaries. Innovative subsampling and negative sampling methods are proposed to derive word embeddings optimized for CWS. We conduct experiments on five datasets in special domains, covering domains in novels, medicine, and patent. Results show that our model can obviously improve cross-domain CWS, especially in the segmentation of domain-specific noun entities. The word F-measure increases by over 3.0% on four datasets, outperforming state-of-the-art semi-supervised and unsupervised cross-domain CWS approaches with a large margin. We make our code and data available on Github

    Fast and Accurate Neural Word Segmentation for Chinese

    Full text link
    Neural models with minimal feature engineering have achieved competitive performance against traditional methods for the task of Chinese word segmentation. However, both training and working procedures of the current neural models are computationally inefficient. This paper presents a greedy neural word segmenter with balanced word and character embedding inputs to alleviate the existing drawbacks. Our segmenter is truly end-to-end, capable of performing segmentation much faster and even more accurate than state-of-the-art neural models on Chinese benchmark datasets.Comment: To appear in ACL201

    Neural Word Segmentation with Rich Pretraining

    Full text link
    Neural word segmentation research has benefited from large-scale raw texts by leveraging them for pretraining character and word embeddings. On the other hand, statistical segmentation research has exploited richer sources of external information, such as punctuation, automatic segmentation and POS. We investigate the effectiveness of a range of external training sources for neural word segmentation by building a modular segmentation model, pretraining the most important submodule using rich external sources. Results show that such pretraining significantly improves the model, leading to accuracies competitive to the best methods on six benchmarks.Comment: Accepted by ACL 201
    • …
    corecore