1,360 research outputs found

    Text Understanding from Scratch

    Full text link
    This article demontrates that we can apply deep learning to text understanding from character-level inputs all the way up to abstract text concepts, using temporal convolutional networks (ConvNets). We apply ConvNets to various large-scale datasets, including ontology classification, sentiment analysis, and text categorization. We show that temporal ConvNets can achieve astonishing performance without the knowledge of words, phrases, sentences and any other syntactic or semantic structures with regards to a human language. Evidence shows that our models can work for both English and Chinese.Comment: This technical report is superseded by a paper entitled "Character-level Convolutional Networks for Text Classification", arXiv:1509.01626. It has considerably more experimental results and a rewritten introductio

    An Empirical Study on Sentiment Classification of Chinese Review using Word Embedding

    Full text link
    In this article, how word embeddings can be used as features in Chinese sentiment classification is presented. Firstly, a Chinese opinion corpus is built with a million comments from hotel review websites. Then the word embeddings which represent each comment are used as input in different machine learning methods for sentiment classification, including SVM, Logistic Regression, Convolutional Neural Network (CNN) and ensemble methods. These methods get better performance compared with N-gram models using Naive Bayes (NB) and Maximum Entropy (ME). Finally, a combination of machine learning methods is proposed which presents an outstanding performance in precision, recall and F1 score. After selecting the most useful methods to construct the combinational model and testing over the corpus, the final F1 score is 0.920.Comment: The 29th Pacific Asia Conference on Language, Information and Computin

    Character-level Convolutional Networks for Text Classification

    Get PDF
    This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.Comment: An early version of this work entitled "Text Understanding from Scratch" was posted in Feb 2015 as arXiv:1502.01710. The present paper has considerably more experimental results and a rewritten introduction, Advances in Neural Information Processing Systems 28 (NIPS 2015

    Modeling Text with Graph Convolutional Network for Cross-Modal Information Retrieval

    Full text link
    Cross-modal information retrieval aims to find heterogeneous data of various modalities from a given query of one modality. The main challenge is to map different modalities into a common semantic space, in which distance between concepts in different modalities can be well modeled. For cross-modal information retrieval between images and texts, existing work mostly uses off-the-shelf Convolutional Neural Network (CNN) for image feature extraction. For texts, word-level features such as bag-of-words or word2vec are employed to build deep learning models to represent texts. Besides word-level semantics, the semantic relations between words are also informative but less explored. In this paper, we model texts by graphs using similarity measure based on word2vec. A dual-path neural network model is proposed for couple feature learning in cross-modal information retrieval. One path utilizes Graph Convolutional Network (GCN) for text modeling based on graph representations. The other path uses a neural network with layers of nonlinearities for image modeling based on off-the-shelf features. The model is trained by a pairwise similarity loss function to maximize the similarity of relevant text-image pairs and minimize the similarity of irrelevant pairs. Experimental results show that the proposed model outperforms the state-of-the-art methods significantly, with 17% improvement on accuracy for the best case.Comment: 7 pages, 11 figure

    Towards Accurate Deceptive Opinion Spam Detection based on Word Order-preserving CNN

    Full text link
    Nowadays, deep learning has been widely used. In natural language learning, the analysis of complex semantics has been achieved because of its high degree of flexibility. The deceptive opinions detection is an important application area in deep learning model, and related mechanisms have been given attention and researched. On-line opinions are quite short, varied types and content. In order to effectively identify deceptive opinions, we need to comprehensively study the characteristics of deceptive opinions, and explore novel characteristics besides the textual semantics and emotional polarity that have been widely used in text analysis. The detection mechanism based on deep learning has better self-adaptability and can effectively identify all kinds of deceptive opinions. In this paper, we optimize the convolution neural network model by embedding the word order characteristics in its convolution layer and pooling layer, which makes convolution neural network more suitable for various text classification and deceptive opinions detection. The TensorFlow-based experiments demonstrate that the detection mechanism proposed in this paper achieve more accurate deceptive opinion detection results

    A Deep Learning Approach for Expert Identification in Question Answering Communities

    Full text link
    In this paper, we describe an effective convolutional neural network framework for identifying the expert in question answering community. This approach uses the convolutional neural network and combines user feature representations with question feature representations to compute scores that the user who gets the highest score is the expert on this question. Unlike prior work, this method does not measure expert based on measure answer content quality to identify the expert but only require question sentence and user embedding feature to identify the expert. Remarkably, Our model can be applied to different languages and different domains. The proposed framework is trained on two datasets, The first dataset is Stack Overflow and the second one is Zhihu. The Top-1 accuracy results of our experiments show that our framework outperforms the best baseline framework for expert identification.Comment: 7 pages. arXiv admin note: text overlap with arXiv:1403.6652 by other author

    Multi-task Learning for Chinese Word Usage Errors Detection

    Full text link
    Chinese word usage errors often occur in non-native Chinese learners' writing. It is very helpful for non-native Chinese learners to detect them automatically when learning writing. In this paper, we propose a novel approach, which takes advantages of different auxiliary tasks, such as POS-tagging prediction and word log frequency prediction, to help the task of Chinese word usage error detection. With the help of these auxiliary tasks, we achieve the state-of-the-art results on the performances on the HSK corpus data, without any other extra data.Comment: 4 pages, 2 figures, 1 table, has been accepted as a conference paper of the 3rd IEEE International Conference on Computational Intelligence and Applications (ICCIA 2018

    Convolutional Neural Network with Word Embeddings for Chinese Word Segmentation

    Full text link
    Character-based sequence labeling framework is flexible and efficient for Chinese word segmentation (CWS). Recently, many character-based neural models have been applied to CWS. While they obtain good performance, they have two obvious weaknesses. The first is that they heavily rely on manually designed bigram feature, i.e. they are not good at capturing n-gram features automatically. The second is that they make no use of full word information. For the first weakness, we propose a convolutional neural model, which is able to capture rich n-gram features without any feature engineering. For the second one, we propose an effective approach to integrate the proposed model with word embeddings. We evaluate the model on two benchmark datasets: PKU and MSR. Without any feature engineering, the model obtains competitive performance -- 95.7% on PKU and 97.3% on MSR. Armed with word embeddings, the model achieves state-of-the-art performance on both datasets -- 96.5% on PKU and 98.0% on MSR, without using any external labeled resource.Comment: will be published by IJCNLP201

    DocTag2Vec: An Embedding Based Multi-label Learning Approach for Document Tagging

    Full text link
    Tagging news articles or blog posts with relevant tags from a collection of predefined ones is coined as document tagging in this work. Accurate tagging of articles can benefit several downstream applications such as recommendation and search. In this work, we propose a novel yet simple approach called DocTag2Vec to accomplish this task. We substantially extend Word2Vec and Doc2Vec---two popular models for learning distributed representation of words and documents. In DocTag2Vec, we simultaneously learn the representation of words, documents, and tags in a joint vector space during training, and employ the simple kk-nearest neighbor search to predict tags for unseen documents. In contrast to previous multi-label learning methods, DocTag2Vec directly deals with raw text instead of provided feature vector, and in addition, enjoys advantages like the learning of tag representation, and the ability of handling newly created tags. To demonstrate the effectiveness of our approach, we conduct experiments on several datasets and show promising results against state-of-the-art methods.Comment: 10 page

    A Question Answering Approach to Emotion Cause Extraction

    Full text link
    Emotion cause extraction aims to identify the reasons behind a certain emotion expressed in text. It is a much more difficult task compared to emotion classification. Inspired by recent advances in using deep memory networks for question answering (QA), we propose a new approach which considers emotion cause identification as a reading comprehension task in QA. Inspired by convolutional neural networks, we propose a new mechanism to store relevant context in different memory slots to model context information. Our proposed approach can extract both word level sequence features and lexical features. Performance evaluation shows that our method achieves the state-of-the-art performance on a recently released emotion cause dataset, outperforming a number of competitive baselines by at least 3.01% in F-measure.Comment: Accepted by EMNLP 201
    • …
    corecore