246 research outputs found

    Advanced analysis of carbohydrates in foods

    Get PDF
    In this chapter, modern analytical procedures used to study carbohydrates in foods and beverages are discussed. The main advanced analytical methodologies applied to determine the different carbohydrate families (monosaccharides, oligosaccharides, polysaccharides and macromolecules including different glycosilated compounds) are reviewed considering the sample preparation required and the type of technique (separation or spectroscopic) used, including their different couplings, multidimensional- approaches, modern glycomics strategies, etc. The goal of this contribution is, therefore, to provide the reader with a broad and critical view on the different analytical methods nowadays employed to analyze carbohydrates in foods and their foreseeable trends.Peer Reviewe

    Wine Traceability

    Get PDF
    Wine traceability is a central theme in the current world market where consumers are increasingly demanding the quality and origin of food and drink. The wine production chain and wine composition are generally controlled by different laws (International Organization of Vine and Wine (OIV), European Union (EU), and national governments) and need specific documentation. Nevertheless, wine production is subject to fraud. Consequently, the improvement of the methods applied to verify the origin and quality of wines is very important to protect wine consumers and producers. In this book, eight different papers—six research papers and two reviews—address the topic from different points of view

    Flavour Volatiles of Wine

    Get PDF
    The perception of wine flavour and aroma is the result of several interactions between a large number of chemical compounds and sensory receptors. Compounds show synergistic (one compound enhances the perception of another) and antagonistic (one compound suppresses the perception of another) interactions. The chemical profile of a wine is derived from the entire process, starting from the grapes and continuing through to bottled ageing. At the moment, wine makers are limited as to the range of yeasts that are able to impart some specific aromatic characteristic to a wine, and research focuses on issues such as adjusting the levels of flavour and aroma compounds, in particular esters and alcohols, producing enzymes that will release additional volatile compounds from the grapes, and reducing the amount of alcohol to levels that allow a better perception and release of aroma and flavour compounds. New yeast strains are continuously being developed using traditional breeding techniques, leading to different flavour and aroma profiles in wine. The potential flavour volatiles of wine include, but are not limited, to the following: i) varietal; ii) pre-fermentative volatiles formed by the yeast during fermentation; iii) formed by the yeast directly related to alcoholic fermentation; iv) related to amino acid metabolism; v) formed during malolactic fermentation; vi) formed during ageing (reductive and oxidative pathway) and maturation. This Special Issue, “Flavour Volatiles of Wine”, aims to reach a mechanistic understanding of these pathways, with a focus on the reactions involved in the formation or degradation of key wine odorants, and of the technological factors involved during the winemaking process. It consists of six peer-reviewed papers that cover novel aspects of volatile compounds research in the wine sector

    Grapes and Wine

    Get PDF
    Grape and Wine is a collective book composed of 18 chapters that address different issues related to the technological and biotechnological management of vineyards and winemaking. It focuses on recent advances, hot topics and recurrent problems in the wine industry and aims to be helpful for the wine sector. Topics covered include pest control, pesticide management, the use of innovative technologies and biotechnologies such as non-thermal processes, gene editing and use of non-Saccharomyces, the management of instabilities such as protein haze and off-flavors such as light struck or TCAs, the use of big data technologies, and many other key concepts that make this book a powerful reference in grape and wine production. The chapters have been written by experts from universities and research centers of 9 countries, thus representing knowledge, research and know-how of many regions worldwide

    Characterization of Bioactive Compounds in Foods and Plants Using Advanced Analytical Techniques

    Get PDF
    Since the 1990s, food chemistry opened a new chapter in foods and plants investigation. An increasing attention to secondary metabolites and micro-constituents of nutraceutical interest present in foods has been noticed, supporting previous studies on macronutrient composition. Thanks to positive scientific opinions on the presence of bioactive molecules in plants and foods, the previous vision of exploring foods exclusively from a “caloric” point of view has been changed to looking at foodstuffs as having positive effects on human health.This book focuses on the optimization and validation of advanced analytical methodologies dedicated to the characterization and valorization of foods and plants containing bioactive molecules. Qualitative and quantitative characterization, food security, traceability, and innovation in the field of nutraceutical and functional nutrition will be of particular interest in order to stimulate a dialogue on correct nutrition concepts in a constantly changing cultural, technological, and climate context

    Estudio teórico y aplicado del potencial de la espectrometría de movilidad iónica

    Get PDF
    Ion mobility spectrometry (IMS) is an analytical technique based on the separation of gaseous ions under the influence of an electric field through an inert gas atmosphere. Some of the main limitations of IMS, depending on the context, may be the limited quantification capacity of compounds in real samples since narrow linear quantification ranges are normally obtained; the low selectivity due to the low resolution power of this type of equipment; and the difficulty of unequivocally identifying compounds in real samples since the existing databases are not as up-to-date as for other technologies such as mass spectrometry (MS). Therefore, it is evident that there is a demand for more selective methodologies and that provide greater analyte detection and quantification capacity. With these premises, it can be said that the greatest current challenge of the IMS is to maximize the detection capacity of the technique in order to achieve the unambiguous identification of a high number of analytes. This challenge is currently utopian when working with complex samples. For this reason, the main motivation of this Doctoral Thesis was to seek solutions for the different challenges that the IMS currently faces in a theoretical and applied context. The basic objective of the research was to explore the potential of IMS by using theoretical and applied strategies to improve the detection and identification coverage of the analysis carried out with this technology. These new strategies were applied throughout the main steps of the analytical process and allowed improving basic analytical features such as the selectivity and sensitivity of optimized analysis methods and their detection capacity. The achievement of this basic objective leaded to analysis methods of standards and real samples, such as explosives, drugs, soil, rosemary plant, olives and mainly different types of olive oils. This basic objective was divided into three general objectives according to the different research topics to address in this Doctoral Thesis: a) To take benefits derived from the study of theoretical aspects of IMS for improving the interpretation of IMS spectra and from the use of additional features such as structural information to enhance qualitative analysis; b) To develop approaches to improve the detection and identification capacity in IMS analysis; and c) To exploit the opportunities of gas chromatography (GC)-IMS and IMS devices for food analysis as an expanding application area in IMS based on untargeted analysis methods. In this context, the Thesis has included the following studies: (i) To study about the fundamentals of the formation of product ions through the modeling of ions stability using ab initio computations to math these results with the spectral patterns and structure of ions [1]. (ii) To explore the fragmentation of ions using an external electric field and the potential of the extra information of these fragments to enhance the rates of categorization by chemical class using neural networks [2]. (iii) To explore a thermal desorption (TD)-IMS device to obtain spectral fingerprints of Cannabis herbal samples, with and without pretreatment for rapid assignment to their different chemotypes by using principal component análisis (PCA) and linear discriminant analysis (LDA) [3]. (iv) To achieve the selectivity in response to trinitrotoluene (TNT) through reactive removal of interfering ions following mobility isolation using a tandem IMS with reactive stage as detection system [4]. (v) To develop a pioneer online coupling of supercritical fluid extraction (SFE) as sample introduction system (SIS) prior IMS using a column filled with Tenax TA material as sorbent trap to coupled both devices to improve analytical properties such as sensitivity and selectivity of future IMS methods [5]. (vi) To carry out a bibliographical study which gather and critically discuss recent publications related to analytical techniques to distinguish olive oils according to their quality as extra virgin (EVOO), virgin (VOO) or lampante (LOO) [6]. (vii) To investigate and compare different chemometric approaches for olive oil classification as EVOO, VOO or LOO using GC-IMS to get the most robust model over time [7]. (viii) To evaluate the combination of the results of orthogonal instrumental techniques to differentiate EVOO, VOO or LOO to imitate the expert panels [8]. (ix) To analyze olive and olive oil samples according with their production system to classify them as organic or conventional using ultraviolet (UV)-IMS, GC-IMS, GC-MS and/or capillary electrophoresis (CE)-UV [9].La espectrometría de movilidad iónica (IMS en inglés) es una técnica analítica que se basa en la separación de iones gaseosos bajo la influencia de un campo eléctrico a través de una atmósfera de gas inerte. Algunas de las principales limitaciones de la IMS, dependiendo del contexto, pueden ser la limitada capacidad de cuantificación de compuestos en muestras reales ya que se obtienen normalmente rangos lineales de cuantificación muy estrechos; la escasa selectividad debido al bajo poder de resolución de este tipo de equipos; y la dificultad de identificación de forma inequívoca de compuestos en muestras reales ya que las bases de datos existentes no están tan actualizadas como para otras tecnologías como la espectrometría de masas (MS en inglés). Por tanto, resulta evidente que existe una demanda de metodologías más selectivas y que proporcionen mayor capacidad de detección y cuantificación de analitos. Con estas premisas, se puede decir que el mayor reto actual de la IMS es maximizar la capacidad de detección de la técnica con el fin de conseguir la identificación inequívoca de un alto número de analitos. Este reto es actualmente utópico cuando se trabaja con muestras complejas. Por ello, la principal motivación de esta Tesis Doctoral fue buscar soluciones para los distintos retos a los que se enfrenta actualmente la IMS en un contexto teórico y aplicado. El objetivo básico de la investigación fue explorar el potencial de la IMS mediante el uso de estrategias teóricas y aplicadas para mejorar la capacidad de detección e identificación de los análisis realizados con esta tecnología. Estas nuevas estrategias se aplicaron a lo largo de las etapas principales del proceso analítico y permitieron mejorar características analíticas básicas, como la selectividad y la sensibilidad, de los métodos de análisis optimizados y su capacidad de detección. El logro de este objetivo básico condujo a métodos de análisis de estándares y muestras reales, como explosivos, drogas, suelo, plantas de romero, aceitunas y principalmente diferentes tipos de aceites de oliva. Este objetivo básico se dividió en tres objetivos generales de acuerdo con los diferentes temas de investigación para abordar en esta Tesis Doctoral: a) aprovechar los beneficios derivados del estudio de los aspectos teóricos de la IMS para mejorar la interpretación de los espectros de IMS y del uso de características adicionales como información estructural para mejorar el análisis cualitativo; b) desarrollar herramientas para mejorar la capacidad de detección e identificación en los análisis de IMS; y c) aprovechar las oportunidades de los instrumentos de cromatografía de gases (GC en inglés)-IMS e IMS para el análisis de alimentos como un área de aplicación en expansión en IMS basado en métodos de análisis no dirigidos. En este contexto, la Tesis ha incluido los siguientes estudios: (i) Estudiar los fundamentos de la formación de iones producto a través del modelado computacional de la estabilidad de los iones utilizando cálculos ab initio para combinarlos con los patrones espectrales y la estructura de los iones [1]. (ii) Explorar la fragmentación de iones utilizando un campo eléctrico externo y el potencial de la información adicional de estos fragmentos para mejorar las tasas de categorización por clase química utilizando redes neuronales [2]. (iii) Explorar un equipo de desorción térmica (TD en inglés)-IMS para obtener huellas espectrales de muestras de plantas de cannabis, con y sin pretratamiento, para la rápida asignación de los diferentes quimiotipos mediante análisis de componentes principales (PCA en inglés) y análisis discriminante lineal (LDA en inglés) [3]. (iv) Lograr la respuesta selectiva del trinitrotolueno (TNT en inglés) a través de la eliminación con etapa reactiva de iones interferentes usando el aislamiento de iones con un IMS en tándem con etapa reactiva como sistema de detección [4]. (v) Desarrollar un acoplamiento on-line pionero de la extracción con fluidos supercríticos (SFE en inglés) como sistema de introducción de muestra previo a la IMS utilizando una columna rellena con el material Tenax TA como trampa sorbente para acoplar ambos dispositivos para mejorar propiedades analíticas como la sensibilidad y la selectividad de futuros métodos IMS [5]. (vi) Realizar un estudio bibliográfico que reúna y discuta críticamente las publicaciones recientes relacionadas con técnicas analíticas para distinguir los aceites de oliva según su calidad como virgen extra (AOVE), virgen (AOV) o lampante (AOL) [6]. (vii) Investigar y comparar diferentes estrategias quimiométricas para la clasificación del aceite de oliva como AOVE, AOV o AOL utilizando la GC-IMS para obtener el modelo más robusto con el tiempo [7]. (viii) Evaluar la combinación de los resultados de técnicas instrumentales ortogonales para diferenciar AOVE, AOV o AOL para imitar los paneles de expertos [8]. (ix) Analizar muestras de aceitunas y aceite de oliva de acuerdo con su sistema de producción para clasificarlas como ecológicas o convencionales usando ultravioleta (UV)-IMS, GC-IMS, GC-MS y/o electroforesis capilar (CE en inglés)- UV [9]
    corecore