279 research outputs found

    Topological and Algebraic Properties of Chernoff Information between Gaussian Graphs

    Full text link
    In this paper, we want to find out the determining factors of Chernoff information in distinguishing a set of Gaussian graphs. We find that Chernoff information of two Gaussian graphs can be determined by the generalized eigenvalues of their covariance matrices. We find that the unit generalized eigenvalue doesn't affect Chernoff information and its corresponding dimension doesn't provide information for classification purpose. In addition, we can provide a partial ordering using Chernoff information between a series of Gaussian trees connected by independent grafting operations. With the relationship between generalized eigenvalues and Chernoff information, we can do optimal linear dimension reduction with least loss of information for classification.Comment: Submitted to Allerton2018, and this version contains proofs of the propositions in the pape

    Learning Latent Tree Graphical Models

    Get PDF
    We study the problem of learning a latent tree graphical model where samples are available only from a subset of variables. We propose two consistent and computationally efficient algorithms for learning minimal latent trees, that is, trees without any redundant hidden nodes. Unlike many existing methods, the observed nodes (or variables) are not constrained to be leaf nodes. Our first algorithm, recursive grouping, builds the latent tree recursively by identifying sibling groups using so-called information distances. One of the main contributions of this work is our second algorithm, which we refer to as CLGrouping. CLGrouping starts with a pre-processing procedure in which a tree over the observed variables is constructed. This global step groups the observed nodes that are likely to be close to each other in the true latent tree, thereby guiding subsequent recursive grouping (or equivalent procedures) on much smaller subsets of variables. This results in more accurate and efficient learning of latent trees. We also present regularized versions of our algorithms that learn latent tree approximations of arbitrary distributions. We compare the proposed algorithms to other methods by performing extensive numerical experiments on various latent tree graphical models such as hidden Markov models and star graphs. In addition, we demonstrate the applicability of our methods on real-world datasets by modeling the dependency structure of monthly stock returns in the S&P index and of the words in the 20 newsgroups dataset
    • …
    corecore