141 research outputs found

    Optimizing text mining methods for improving biomedical natural language processing

    Get PDF
    The overwhelming amount and the increasing rate of publication in the biomedical domain make it difficult for life sciences researchers to acquire and maintain all information that is necessary for their research. Pubmed (the primary citation database for the biomedical literature) currently contains over 21 million article abstracts and more than one million of them were published in 2020 alone. Even though existing article databases provide capable keyword search services, typical everyday-life queries usually return thousands of relevant articles. For instance, a cancer research scientist may need to acquire a complete list of genes that interact with BRCA1 (breast cancer 1) gene. The PubMed keyword search for BRCA1 returns over 16,500 article abstracts, making manual inspection of the retrieved documents impractical. Missing even one of the interacting gene partners in this scenario may jeopardize successful development of a potential new drug or vaccine. Although manually curated databases of biomolecular interactions exist, they are usually not up-to-date and they require notable human effort to maintain. To summarize, new discoveries are constantly being shared within the community via scientific publishing, but unfortunately the probability of missing vital information for research in life sciences is increasing. In response to this problem, the biomedical natural language processing (BioNLP) community of researchers has emerged and strives to assist life sciences researchers by building modern language processing and text mining tools that can be applied at large-scale and scan the whole publicly available literature and extract, classify, and aggregate the information found within, thus keeping life sciences researchers always up-to-date with the recent relevant discoveries and facilitating their research in numerous fields such as molecular biology, biomedical engineering, bioinformatics, genetics engineering and biochemistry. My research has almost exclusively focused on biomedical relation and event extraction tasks. These foundational information extraction tasks deal with automatic detection of biological processes, interactions and relations described in the biomedical literature. Precisely speaking, biomedical relation and event extraction systems can scan through a vast amount of biomedical texts and automatically detect and extract the semantic relations of biomedical named entities (e.g. genes, proteins, chemical compounds, and diseases). The structured outputs of such systems (i.e., the extracted relations or events) can be stored as relational databases or molecular interaction networks which can easily be queried, filtered, analyzed, visualized and integrated with other structured data sources. Extracting biomolecular interactions has always been the primary interest of BioNLP researcher because having knowledge about such interactions is crucially important in various research areas including precision medicine, drug discovery, drug repurposing, hypothesis generation, construction and curation of signaling pathways, and protein function and structure prediction. State-of-the-art relation and event extraction methods are based on supervised machine learning, requiring manually annotated data for training. Manual annotation for the biomedical domain requires domain expertise and it is time-consuming. Hence, having minimal training data for building information extraction systems is a common case in the biomedical domain. This demands development of methods that can make the most out of available training data and this thesis gathers all my research efforts and contributions in that direction. It is worth mentioning that biomedical natural language processing has undergone a revolution since I started my research in this field almost ten years ago. As a member of the BioNLP community, I have witnessed the emergence, improvement– and in some cases, the disappearance–of many methods, each pushing the performance of the best previous method one step further. I can broadly divide the last ten years into three periods. Once I started my research, feature-based methods that relied on heavy feature engineering were dominant and popular. Then, significant advancements in the hardware technology, as well as several breakthroughs in the algorithms and methods enabled machine learning practitioners to seriously utilize artificial neural networks for real-world applications. In this period, convolutional, recurrent, and attention-based neural network models became dominant and superior. Finally, the introduction of transformer-based language representation models such as BERT and GPT impacted the field and resulted in unprecedented performance improvements on many data sets. When reading this thesis, I demand the reader to take into account the course of history and judge the methods and results based on what could have been done in that particular period of the history

    Potent pairing: ensemble of long short-term memory networks and support vector machine for chemical-protein relation extraction

    Get PDF
    Biomedical researchers regularly discover new interactions between chemical compounds/drugs and genes/proteins, and report them in research literature. Having knowledge about these interactions is crucially important in many research areas such as precision medicine and drug discovery. The BioCreative VI Task 5 (CHEMPROT) challenge promotes the development and evaluation of computer systems that can automatically recognize and extract statements of such interactions from biomedical literature. We participated in this challenge with a Support Vector Machine (SVM) system and a deep learning-based system (ST-ANN), and achieved an F-score of 60.99 for the task. After the shared task, we have significantly improved the performance of the ST-ANN system. Additionally, we have developed a new deep learning-based system (I-ANN) that considerably outperforms the ST-ANN system. Both ST-ANN and I-ANN systems are centered around training an ensemble of artificial neural networks and utilizing different bidirectional Long Short-Term Memory (LSTM) chains for representing the shortest dependency path and/or the full sentence. By combining the predictions of the SVM and the I-ANN systems, we achieved an F-score of 63.10 for the task, improving our previous F-score by 2.11 percentage points. Our systems are fully open-source and publicly available. We highlight that the systems we present in this study are not applicable only to the BioCreative VI Task 5, but can be effortlessly re-trained to extract any types of relations of interest, with no modifications of the source code required, if a manually annotated corpus is provided as training data in a specific file format.</p

    Comprehensive ensemble in QSAR prediction for drug discovery

    Get PDF
    Background Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical compounds and biological activities. QSAR modeling is essential for drug discovery, but it has many constraints. Ensemble-based machine learning approaches have been used to overcome constraints and obtain reliable predictions. Ensemble learning builds a set of diversified models and combines them. However, the most prevalent approach random forest and other ensemble approaches in QSAR prediction limit their model diversity to a single subject. Results The proposed ensemble method consistently outperformed thirteen individual models on 19 bioassay datasets and demonstrated superiority over other ensemble approaches that are limited to a single subject. The comprehensive ensemble method is publicly available at http://data.snu.ac.kr/QSAR/ Conclusions We propose a comprehensive ensemble method that builds multi-subject diversified models and combines them through second-level meta-learning. In addition, we propose an end-to-end neural network-based individual classifier that can automatically extract sequential features from a simplified molecular-input line-entry system (SMILES). The proposed individual models did not show impressive results as a single model, but it was considered the most important predictor when combined, according to the interpretation of the meta-learning.Publication costs were funded by Seoul National University. This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) [2014M3C9A3063541, 2018R1A2B3001628], the Brain Korea 21 Plus Project in 2018, and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea [HI15C3224]. The funding bodies did not play any roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript

    Open Information Extraction: A Review of Baseline Techniques, Approaches, and Applications

    Full text link
    With the abundant amount of available online and offline text data, there arises a crucial need to extract the relation between phrases and summarize the main content of each document in a few words. For this purpose, there have been many studies recently in Open Information Extraction (OIE). OIE improves upon relation extraction techniques by analyzing relations across different domains and avoids requiring hand-labeling pre-specified relations in sentences. This paper surveys recent approaches of OIE and its applications on Knowledge Graph (KG), text summarization, and Question Answering (QA). Moreover, the paper describes OIE basis methods in relation extraction. It briefly discusses the main approaches and the pros and cons of each method. Finally, it gives an overview about challenges, open issues, and future work opportunities for OIE, relation extraction, and OIE applications.Comment: 15 pages, 9 figure

    Deep Neural Architectures for End-to-End Relation Extraction

    Get PDF
    The rapid pace of scientific and technological advancements has led to a meteoric growth in knowledge, as evidenced by a sharp increase in the number of scholarly publications in recent years. PubMed, for example, archives more than 30 million biomedical articles across various domains and covers a wide range of topics including medicine, pharmacy, biology, and healthcare. Social media and digital journalism have similarly experienced their own accelerated growth in the age of big data. Hence, there is a compelling need for ways to organize and distill the vast, fragmented body of information (often unstructured in the form of natural human language) so that it can be assimilated, reasoned about, and ultimately harnessed. Relation extraction is an important natural language task toward that end. In relation extraction, semantic relationships are extracted from natural human language in the form of (subject, object, predicate) triples such that subject and object are mentions of discrete concepts and predicate indicates the type of relation between them. The difficulty of relation extraction becomes clear when we consider the myriad of ways the same relation can be expressed in natural language. Much of the current works in relation extraction assume that entities are known at extraction time, thus treating entity recognition as an entirely separate and independent task. However, recent studies have shown that entity recognition and relation extraction, when modeled together as interdependent tasks, can lead to overall improvements in extraction accuracy. When modeled in such a manner, the task is referred to as end-to-end relation extraction. In this work, we present four studies that introduce incrementally sophisticated architectures designed to tackle the task of end-to-end relation extraction. In the first study, we present a pipeline approach for extracting protein-protein interactions as affected by particular mutations. The pipeline system makes use of recurrent neural networks for protein detection, lexicons for gene normalization, and convolutional neural networks for relation extraction. In the second study, we show that a multi-task learning framework, with parameter sharing, can achieve state-of-the-art results for drug-drug interaction extraction. At its core, the model uses graph convolutions, with a novel attention-gating mechanism, over dependency parse trees. In the third study, we present a more efficient and general-purpose end-to-end neural architecture designed around the idea of the table-filling paradigm; for an input sentence of length n, all entities and relations are extracted in a single pass of the network in an indirect fashion by populating the cells of a corresponding n by n table using metric-based features. We show that this approach excels in both the general English and biomedical domains with extraction times that are up to an order of magnitude faster compared to the prior best. In the fourth and last study, we present an architecture for relation extraction that, in addition to being end-to-end, is able to handle cross-sentence and N-ary relations. Overall, our work contributes to the advancement of modern information extraction by exploring end-to-end solutions that are fast, accurate, and generalizable to many high-value domains
    corecore