2,158 research outputs found

    Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining

    Get PDF
    Background. Previously, we developed a combined dictionary dubbed Chemlist for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus. To achieve an acceptable recall and precision we used a number of automatic and semi-automatic processing steps together with disambiguation rules. However, it remained to be investigated which impact an extensive manual curation of a multi-source chemical dictionary would have on chemical term identification in text. ChemSpider is a chemical database that has undergone extensive manual curation aimed at establishing valid chemical name-to-structure relationships. Results. We acquired the component of ChemSpider containing only manually curated names and synonyms. Rule-based term filtering, semi-automatic manual curation, and disambiguation rules were applied. We tested the dictionary from ChemSpider on an annotated corpus and compared the results with those for the Chemlist dictionary. The ChemSpider dictionary of ca. 80 k names was only a 1/3 to a 1/4 the size of Chemlist at around 300 k. The ChemSpider dictionary had a precision of 0.43 and a recall of 0.19 before the application of filtering and disambiguation and a precision of 0.87 and a recall of 0.19 after filtering and disambiguation. The Chemlist dictionary had a precision of 0.20 and a recall of 0.47 before the application of filtering and disambiguation and a precision of 0.67 and a recall of 0.40 after filtering and disambiguation. Conclusions. We conclude the following: (1) The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; (2) Rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary. ChemSpider is available as a web service at http://www.chemspider. com/ and the Chemlist dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web at http://www.biosemantics.org/ chemlist

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Special Libraries, May-June 1978

    Get PDF
    Volume 69, Issue 5-6https://scholarworks.sjsu.edu/sla_sl_1978/1004/thumbnail.jp

    RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Get PDF
    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org

    NIOSH abstracting and indexing guide for automated storage and retrieval system

    Get PDF
    "The methodology behind the abstracting and indexing techniques used to prepare data for entry into the Technical Information Center system of the National Institute for Occupational Safety and Health (NIOSH) was reviewed. This guide was divided into specific search fields found in the system. Guidelines for abstracting and indexing were given which explain how to analyze a document, select terms and use common sentence patterns, reference considerations, style and mechanics, and acceptable characters for the system. Proper use of the abstracting and indexing forms was covered for the following fields of information: abstractor, date, pages, NIOSH number, accession number, source, title, author, reference, publication data, submission date, text, keywords, body, editor, editing, microfiche, hard copy, MT/ST, and data entry. Chemical names were discussed in an appendix with examples included for formatting the names, use of keywords, organic and inorganic chemicals, organometallic compounds, and a listing of common keywords. Tables of information helpful in the indexing of chemical names were included. Sample abstracting and indexing forms were included." - NIOSHTIC-2The contract report number for this document is SRC-TR-72-5-10l(4d).NIOSHTIC no.001813131973contract no. HSM 99-72-3

    Web-Based Visualization of Very Large Scientific Astronomy Imagery

    Full text link
    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.Comment: Published in Astronomy & Computing. IIPImage server available from http://iipimage.sourceforge.net . Visiomatic code and demos available from http://www.visiomatic.org

    Text Mining for Chemical Compounds

    Get PDF
    Exploring the chemical and biological space covered by patent and journal publications is crucial in early- stage medicinal chemistry activities. The analysis provides understanding of compound prior art, novelty checking, validation of biological assays, and identification of new starting points for chemical exploration. Extracting chemical and biological entities from patents and journals through manual extraction by expert curators can take substantial amount of time and resources. Text mining methods can help to ease this process. In this book, we addressed the lack of quality measurements for assessing the correctness of structural representation within and across chemical databases; lack of resources to build text-mining systems; lack of high performance systems to extract chemical compounds from journals and patents; and lack of automated systems to identify relevant compounds in patents. The consistency and ambiguity of chemical identifiers was analyzed within and between small- molecule databases in Chapter 2 and Chapter 3. In Chapter 4 and Chapter 7 we developed resources to enable the construction of chemical text-mining systems. In Chapter 5 and Chapter 6, we used community challenges (BioCreative V and BioCreative VI) and their corresponding resources to identify mentions of chemical compounds in journal abstracts and patents. In Chapter 7 we used our findings in previous chapters to extract chemical named entities from patent full text and to classify the relevancy of chemical compounds

    Are international environmental policies effective? The case of the Rotterdam and the Stockholm Conventions

    Get PDF
    This is the first paper to show that participation in an international environmental agreement has some effectiveness. Our identification strategy consists of applying difference-in-differences techniques in a panel data framework to various levels of data aggregation. We find that ratification of the Rotterdam Convention (RC) and the Stockholm Convention (SC) leads to a reduction in trade of hazardous substances from OECD to non-OECD countries. In particular, we find that when the exporter ratifies the RC, there is a reduction in the import of hazardous chemicals of about 7 percent. In the case of the SC, the results show significant reductions of around 16 percent in trade shipments of persistent organic pollutants. This reduction is more than double the effect found for the RC, which was expected due to a more restricted obligation imposed by the SC convention
    corecore