92 research outputs found

    Enhanced quality reconstruction of erroneous video streams using packet filtering based on non-desynchronizing bits and UDP checksum-filtered list decoding

    Get PDF
    The latest video coding standards, such as H.264 and H.265, are extremely vulnerable in error-prone networks. Due to their sophisticated spatial and temporal prediction tools, the effect of an error is not limited to the erroneous area but it can easily propagate spatially to the neighboring blocks and temporally to the following frames. Thus, reconstructed video packets at the decoder side may exhibit significant visual quality degradation. Error concealment and error corrections are two mechanisms that have been developed to improve the quality of reconstructed frames in the presence of errors. In most existing error concealment approaches, the corrupted packets are ignored and only the correctly received information of the surrounding areas (spatially and/or temporally) is used to recover the erroneous area. This is due to the fact that there is no perfect error detection mechanism to identify correctly received blocks within a corrupted packet, and moreover because of the desynchronization problem caused by the transmission errors on the variable-length code (VLC). But, as many studies have shown, the corrupted packets may contain valuable information that can be used to reconstruct adequately of the lost area (e.g. when the error is located at the end of a slice). On the other hand, error correction approaches, such as list decoding, exploit the corrupted packets to generate several candidate transmitted packets from the corrupted received packet. They then select, among these candidates, the one with the highest likelihood of being the transmitted packet based on the available soft information (e.g. log-likelihood ratio (LLR) of each bit). However, list decoding approaches suffer from a large solution space of candidate transmitted packets. This is worsened when the soft information is not available at the application layer; a more realistic scenario in practice. Indeed, since it is unknown which bits have higher probabilities of having been modified during transmission, the candidate received packets cannot be ranked by likelihood. In this thesis, we propose various strategies to improve the quality of reconstructed packets which have been lightly damaged during transmission (e.g. at most a single error per packet). We first propose a simple but efficient mechanism to filter damaged packets in order to retain those likely to lead to a very good reconstruction and discard the others. This method can be used as a complement to most existing concealment approaches to enhance their performance. The method is based on the novel concept of non-desynchronizing bits (NDBs) defined, in the context of an H.264 context-adaptive variable-length coding (CAVLC) coded sequence, as a bit whose inversion does not cause desynchronization at the bitstream level nor changes the number of decoded macroblocks. We establish that, on typical coded bitstreams, the NDBs constitute about a one-third (about 30%) of a bitstream, and that the effect on visual quality of flipping one of them in a packet is mostly insignificant. In most cases (90%), the quality of the reconstructed packet when modifying an individual NDB is almost the same as the intact one. We thus demonstrate that keeping, under certain conditions, a corrupted packet as a candidate for the lost area can provide better visual quality compared to the concealment approaches. We finally propose a non-desync-based decoding framework, which retains a corrupted packet, under the condition of not causing desynchronization and not altering the number of expected macroblocks. The framework can be combined with most current concealment approaches. The proposed approach is compared to the frame copy (FC) concealment of Joint Model (JM) software (JM-FC) and a state-of-the-art concealment approach using the spatiotemporal boundary matching algorithm (STBMA) mechanism, in the case of one bit in error, and on average, respectively, provides 3.5 dB and 1.42 dB gain over them. We then propose a novel list decoding approach called checksum-filtered list decoding (CFLD) which can correct a packet at the bit stream level by exploiting the receiver side user datagram protocol (UDP) checksum value. The proposed approach is able to identify the possible locations of errors by analyzing the pattern of the calculated UDP checksum on the corrupted packet. This makes it possible to considerably reduce the number of candidate transmitted packets in comparison to conventional list decoding approaches, especially when no soft information is available. When a packet composed of N bits contains a single bit in error, instead of considering N candidate packets, as is the case in conventional list decoding approaches, the proposed approach considers approximately N/32 candidate packets, leading to a 97% reduction in the number of candidates. This reduction can increase to 99.6% in the case of a two-bit error. The method’s performance is evaluated using H.264 and high efficiency video coding (HEVC) test model software. We show that, in the case H.264 coded sequence, on average, the CFLD approach is able to correct the packet 66% of the time. It also offers a 2.74 dB gain over JM-FC and 1.14 dB and 1.42 dB gains over STBMA and hard output maximum likelihood decoding (HO-MLD), respectively. Additionally, in the case of HEVC, the CFLD approach corrects the corrupted packet 91% of the time, and offers 2.35 dB and 4.97 dB gains over our implementation of FC concealment in HEVC test model software (HM-FC) in class B (1920×1080) and C (832×480) sequences, respectively

    Bitstream-Corrupted Video Recovery: A Novel Benchmark Dataset and Method

    Full text link
    The past decade has witnessed great strides in video recovery by specialist technologies, like video inpainting, completion, and error concealment. However, they typically simulate the missing content by manual-designed error masks, thus failing to fill in the realistic video loss in video communication (e.g., telepresence, live streaming, and internet video) and multimedia forensics. To address this, we introduce the bitstream-corrupted video (BSCV) benchmark, the first benchmark dataset with more than 28,000 video clips, which can be used for bitstream-corrupted video recovery in the real world. The BSCV is a collection of 1) a proposed three-parameter corruption model for video bitstream, 2) a large-scale dataset containing rich error patterns, multiple corruption levels, and flexible dataset branches, and 3) a plug-and-play module in video recovery framework that serves as a benchmark. We evaluate state-of-the-art video inpainting methods on the BSCV dataset, demonstrating existing approaches' limitations and our framework's advantages in solving the bitstream-corrupted video recovery problem. The benchmark and dataset are released at https://github.com/LIUTIGHE/BSCV-Dataset.Comment: Accepted by NeurIPS Dataset and Benchmark Track 202

    THE APPLICATION OF REAL-TIME SOFTWARE IN THE IMPLEMENTATION OF LOW-COST SATELLITE RETURN LINKS

    Get PDF
    Digital Signal Processors (DSPs) have evolved to a level where it is feasible for digital modems with relatively low data rates to be implemented entirely with software algorithms. With current technology it is still necessary for analogue processing between the RF input and a low frequency IF but, as DSP technology advances, it will become possible to shift the interface between analogue and digital domains ever closer towards the RF input. The software radio concept is a long-term goal which aims to realise software-based digital modems which are completely flexible in terms of operating frequency, bandwidth, modulation format and source coding. The ideal software radio cannot be realised until DSP, Analogue to Digital (A/D) and Digital to Analogue (D/A) technology has advanced sufficiently. Until these advances have been made, it is often necessary to sacrifice optimum performance in order to achieve real-time operation. This Thesis investigates practical real-time algorithms for carrier frequency synchronisation, symbol timing synchronisation, modulation, demodulation and FEC. Included in this work are novel software-based transceivers for continuous-mode transmission, burst-mode transmission, frequency modulation, phase modulation and orthogonal frequency division multiplexing (OFDM). Ideal applications for this work combine the requirement for flexible baseband signal processing and a relatively low data rate. Suitable applications for this work were identified in low-cost satellite return links, and specifically in asymmetric satellite Internet delivery systems. These systems employ a high-speed (>>2Mbps) DVB channel from service provider to customer and a low-cost, low-speed (32-128 kbps) return channel. This Thesis also discusses asymmetric satellite Internet delivery systems, practical considerations for their implementation and the techniques that are required to map TCP/IP traffic to low-cost satellite return links

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Enhancing Real-time Embedded Image Processing Robustness on Reconfigurable Devices for Critical Applications

    Get PDF
    Nowadays, image processing is increasingly used in several application fields, such as biomedical, aerospace, or automotive. Within these fields, image processing is used to serve both non-critical and critical tasks. As example, in automotive, cameras are becoming key sensors in increasing car safety, driving assistance and driving comfort. They have been employed for infotainment (non-critical), as well as for some driver assistance tasks (critical), such as Forward Collision Avoidance, Intelligent Speed Control, or Pedestrian Detection. The complexity of these algorithms brings a challenge in real-time image processing systems, requiring high computing capacity, usually not available in processors for embedded systems. Hardware acceleration is therefore crucial, and devices such as Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. These devices can assist embedded processors by significantly speeding-up computationally intensive software algorithms. Moreover, critical applications introduce strict requirements not only from the real-time constraints, but also from the device reliability and algorithm robustness points of view. Technology scaling is highlighting reliability problems related to aging phenomena, and to the increasing sensitivity of digital devices to external radiation events that can cause transient or even permanent faults. These faults can lead to wrong information processed or, in the worst case, to a dangerous system failure. In this context, the reconfigurable nature of FPGA devices can be exploited to increase the system reliability and robustness by leveraging Dynamic Partial Reconfiguration features. The research work presented in this thesis focuses on the development of techniques for implementing efficient and robust real-time embedded image processing hardware accelerators and systems for mission-critical applications. Three main challenges have been faced and will be discussed, along with proposed solutions, throughout the thesis: (i) achieving real-time performances, (ii) enhancing algorithm robustness, and (iii) increasing overall system's dependability. In order to ensure real-time performances, efficient FPGA-based hardware accelerators implementing selected image processing algorithms have been developed. Functionalities offered by the target technology, and algorithm's characteristics have been constantly taken into account while designing such accelerators, in order to efficiently tailor algorithm's operations to available hardware resources. On the other hand, the key idea for increasing image processing algorithms' robustness is to introduce self-adaptivity features at algorithm level, in order to maintain constant, or improve, the quality of results for a wide range of input conditions, that are not always fully predictable at design-time (e.g., noise level variations). This has been accomplished by measuring at run-time some characteristics of the input images, and then tuning the algorithm parameters based on such estimations. Dynamic reconfiguration features of modern reconfigurable FPGA have been extensively exploited in order to integrate run-time adaptivity into the designed hardware accelerators. Tools and methodologies have been also developed in order to increase the overall system dependability during reconfiguration processes, thus providing safe run-time adaptation mechanisms. In addition, taking into account the target technology and the environments in which the developed hardware accelerators and systems may be employed, dependability issues have been analyzed, leading to the development of a platform for quickly assessing the reliability and characterizing the behavior of hardware accelerators implemented on reconfigurable FPGAs when they are affected by such faults

    The design and use of a digital radio telemetry system for measuring internal combustion engine piston parameters.

    Get PDF
    During the course of this project, a digital radio telemetry system has been designed and shown to be capable of measuring parameters from the piston of an internal combustion engine, under load. The impetus for the work stems from the need to sample the appropriate data required for oil degradation analysis and the unavailability of system to perform such sampling. The prototype system was designed for installation within a small Norton Villiers C-30 industrial engine. This choice of engine presented significant design challenges due to the small size of the engine (components and construction) and the crankcase environment. These challenges were manifest in the choice of carrier frequency, antenna size and location, modulation scheme, data encoding scheme, signal attenuation, error checking and correction, choice of components, manufacturing techniques and physical mounting to reciprocating parts. In order to overcome these challenges detailed analysis of the radio frequency spectrum was undertaken in order to minimise attenuation from mechanisms such as, absorption, reflection, motion, spatial arrangement and noise. Another aspect of the project concerned the development of a flexible modus operandi in order to facilitate a number of sampling regimes. In order to achieve such flexibility a two-way communication protocol was implemented enabling the sampling system to be programmed into a particular mode of operation, while in use. Additionally the system was designed to accommodate the range of signals output from most transducer devices. The sampling capabilities of the prototype system were extended by enabling the system to support multiple transducers providing a mixture of output signals; for example both analogue and digital signals have been sampled. Additionally, a facility to sample data in response to triggering stimuli has been tested; specifically a sampling trigger may be derived from the motion of the piston via an accelerometer. Ancillary components, such as interface hardware and software, have been developed which are suitable for the recording of data accessed by the system. This work has demonstrated that multi-transducer, mixed signal monitoring of piston parameters, (such as temperature, acceleration etc.) using a two-way, programmable, digital radio frequency telemetry system is not only possible but provides a means for more advanced instrumentation

    Fault-tolerant satellite computing with modern semiconductors

    Get PDF
    Miniaturized satellites enable a variety space missions which were in the past infeasible, impractical or uneconomical with traditionally-designed heavier spacecraft. Especially CubeSats can be launched and manufactured rapidly at low cost from commercial components, even in academic environments. However, due to their low reliability and brief lifetime, they are usually not considered suitable for life- and safety-critical services, complex multi-phased solar-system-exploration missions, and missions with a longer duration. Commercial electronics are key to satellite miniaturization, but also responsible for their low reliability: Until 2019, there existed no reliable or fault-tolerant computer architectures suitable for very small satellites. To overcome this deficit, a novel on-board-computer architecture is described in this thesis.Robustness is assured without resorting to radiation hardening, but through software measures implemented within a robust-by-design multiprocessor-system-on-chip. This fault-tolerant architecture is component-wise simple and can dynamically adapt to changing performance requirements throughout a mission. It can support graceful aging by exploiting FPGA-reconfiguration and mixed-criticality.  Experimentally, we achieve 1.94W power consumption at 300Mhz with a Xilinx Kintex Ultrascale+ proof-of-concept, which is well within the powerbudget range of current 2U CubeSats. To our knowledge, this is the first COTS-based, reproducible on-board-computer architecture that can offer strong fault coverage even for small CubeSats.European Space AgencyComputer Systems, Imagery and Medi

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    Study of spaceborne multiprocessing, phase 1

    Get PDF
    Multiprocessing computer organizations and their application to future space mission
    corecore